Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Cancer

Safer Non-Stick Coatings: Scientists Develop Alternative to Teflon

Scientists at the University of Toronto have developed a new non-stick material that rivals the performance of traditional PFAS-based coatings while using only minimal amounts of these controversial “forever chemicals.” Through an inventive process called “nanoscale fletching,” they modified silicone-based polymers to repel both water and oil effectively. This breakthrough could pave the way for safer cookware, fabrics, and other products without the environmental and health risks linked to long-chain PFAS.

Avatar photo

Published

on

The scientific community has been working towards developing safer alternatives to per- and polyfluoroalkyl substances (PFAS), a family of chemicals commonly used in non-stick coatings. Researchers at the University of Toronto Engineering have made significant progress in this area by creating a new material that repels both water and grease about as well as standard PFAS-based coatings, but with much lower amounts of these chemicals.

Professor Kevin Golovin and his team have been working on developing alternative materials to replace Teflon, which has been used for decades due to its non-stick properties. However, the chemical inertness that makes Teflon so effective also causes it to persist in the environment and accumulate in biological tissues, leading to health concerns.

The researchers’ solution is a material called polydimethylsiloxane (PDMS), often sold as silicone. They have developed a new chemistry technique called nanoscale fletching, which bonds short chains of PDMS to a base material, resembling bristles on a brush. To improve the oil-repelling ability, they added the shortest possible PFAS molecule, consisting of a single carbon with three fluorines on it.

When coated on a piece of fabric and tested with various oils, the new coating achieved a grade of 6, placing it on par with many standard PFAS-based coatings. While this may seem like a small improvement, it’s a crucial step towards creating safer alternatives to Teflon and other PFAS-based materials.

The team is now working on further improving their material, aiming to create a substance that outperforms Teflon without using any PFAS at all. This would be a significant breakthrough in the field, paving the way for the development of even safer non-stick coatings for consumer products.

In conclusion, scientists have made significant progress in developing a safer alternative to Teflon and other PFAS-based materials. The new material has shown promising results, and further research is needed to improve its performance and scalability. As we move forward, it’s essential to prioritize the development of safe and sustainable technologies that minimize harm to both humans and the environment.

Cancer

A Tiny Chemistry Hack Makes mRNA Vaccines Safer, Stronger, and Smarter

What if mRNA vaccines could be made more powerful and less irritating? Scientists at the University of Pennsylvania have found a way to do just that—by tweaking a key molecule in the vaccine’s delivery system. Using a century-old chemical trick called the Mannich reaction, they added anti-inflammatory phenol groups to the lipids that carry mRNA into cells. The result? A new class of lipids that reduce side effects, boost gene-editing success, fight cancer more effectively, and supercharge vaccines like those for COVID-19. This breakthrough could change how we build the next generation of vaccines and therapies.

Avatar photo

Published

on

The rewritten article:

Scientists have made a groundbreaking discovery that can revolutionize the way mRNA vaccines are designed and delivered. Researchers at the University of Pennsylvania have found a way to tweak the structure of ionizable lipids, a key component of lipid nanoparticles (LNPs), to reduce inflammation and boost vaccine effectiveness.

Until now, LNPs have largely been synthesized using chemical reactions that combine two components into a new molecule. However, this process has limited the variety of molecular outcomes and led to unwanted side effects. The team discovered an alternative approach: the Mannich reaction, which combines three precursors to create hundreds of new lipids.

By incorporating phenol groups, a combination of hydrogen and oxygen connected to a ring of carbon molecules, into these new lipids, researchers have found that inflammation is substantially reduced. This breakthrough has significant implications for the development of mRNA vaccines for treating various diseases, including COVID-19, cancer, and genetic disorders.

The new LNPs not only reduce inflammation but also improve vaccine performance. In multiple experiments, C-a16 LNPs, which incorporate the most anti-inflammatory lipid, outperformed traditional LNPs used in on-the-market mRNA technologies. These results have far-reaching consequences for the field of medicine, as they could lead to more effective and safer treatments for a wide range of diseases.

The team’s findings also shed light on the potential of overlooked chemical processes like the Mannich reaction to unlock new LNP-enhancing recipes. This study was conducted at the University of Pennsylvania School of Engineering and Applied Science (Penn Engineering) and the Perelman School of Medicine (Penn Medicine), and was supported by various grants and awards.

This tiny chemistry hack has the potential to make mRNA vaccines safer, stronger, and smarter, revolutionizing the field of medicine and opening up new frontiers for scientific discovery.

Continue Reading

Animals

Florida Cat’s Latest Catch: New Virus Discovered in Shrew

A cat named Pepper has once again helped scientists discover a new virus—this time a mysterious orthoreovirus found in a shrew. Researchers from the University of Florida, including virologist John Lednicky, identified this strain during unrelated testing and published its genome. Although once thought to be harmless, these viruses are increasingly linked to serious diseases in humans and animals. With previous discoveries also pointing to a pattern of viral emergence in wildlife, scientists stress the need for more surveillance—and Pepper remains an unlikely but reliable viral scout.

Avatar photo

Published

on

The University of Florida’s Pepper, the pet cat who made headlines last year for discovering the first jeilongvirus found in the U.S., has done it again. This time, his keen senses have led researchers to a new strain of orthoreovirus, which is known to infect humans, white-tailed deer, bats, and other mammals.

John Lednicky, Ph.D., Pepper’s owner and a University of Florida College of Public Health and Health Professions virologist, was testing a specimen from an Everglades short-tailed shrew when he stumbled upon the new virus. The discovery came as part of his ongoing work to understand transmission of the mule deerpox virus.

Lednicky’s team published the complete genomic coding sequences for the virus they named “Gainesville shrew mammalian orthoreovirus type 3 strain UF-1” in the journal Microbiology Resource Announcements. The researchers note that while there have been rare reports of orthoreoviruses being associated with cases of encephalitis, meningitis, and gastroenteritis in children, more research is needed to understand their effects on humans.

“We need to pay attention to orthoreoviruses and know how to rapidly detect them,” Lednicky said. “There are many different mammalian orthoreoviruses, and not enough is known about this recently identified virus to be concerned.”

Pepper’s contributions to scientific discovery continue unabated. His specimen collection has led researchers to the identification of two other novel viruses found in farmed white-tailed deer, highlighting the importance of continued research into the ever-evolving world of viruses.

The discovery of new viruses is not surprising, given their propensity to constantly evolve and the sophisticated lab techniques used by researchers like Lednicky. “If you look, you’ll find,” he said. “And that’s why we keep finding all these new viruses.”

Lednicky and his team plan to conduct further research into the new virus, including serology and immunology studies to understand its potential threat to humans, wildlife, and pets.

Meanwhile, Pepper remains healthy and continues to contribute to scientific discovery through his outdoor adventures. As Lednicky said, “If you come across a dead animal, why not test it instead of just burying it? There is a lot of information that can be gained.”

Continue Reading

Alternative Medicine

A Sweet Solution: Benzaldehyde Shown to Halt Therapy-Resistant Pancreatic Cancer

A compound best known for giving almonds and apricots their aroma may be the key to defeating hard-to-kill cancer cells. Japanese researchers found that benzaldehyde can stop the shape-shifting ability of aggressive cancer cells, which lets them dodge treatments and spread. By targeting a specific protein interaction essential for cancer survival—without harming normal cells—benzaldehyde and its derivatives could form the basis of powerful new therapies, especially when combined with existing radiation or targeted treatments.

Avatar photo

Published

on

Cancer cells have a notorious ability to multiply rapidly and spread easily throughout the body. One of the reasons they are so successful is their ability to undergo a process called epithelial-to-mesenchymal plasticity, which makes them resistant to elimination by anticancer therapies. In an effort to find new ways to combat this resistance, researchers have been searching for newer anticancer agents that can target these “rogue” cancer cells.

A team of scientists led by Dr. Hideyuki Saya, Director of the Oncology Innovation Center at Fujita Health University in Japan, has made a groundbreaking discovery about the potential of benzaldehyde to halt therapy-resistant pancreatic cancer. This sweet-smelling molecule is responsible for the aroma of almonds, apricots, and figs, but it also has potent anticancer properties.

The researchers were driven by a desire to uncover the mechanism behind benzaldehyde’s anticancer effects, particularly after learning that one of their colleagues had demonstrated its potential back in the 1980s. The first author of the study, Dr. Jun Saito, was motivated by her parents’ pioneering work on benzaldehyde and its derivatives.

The team conducted extensive research using a mouse model grafted with growing pancreatic cancer cells. They found that benzaldehyde inhibited the growth of these cancer cells, even when they had become resistant to radiation therapy and treatment with osimertinib, an agent blocking tyrosine kinases in growth factor signaling.

Their findings revealed that benzaldehyde exerts its anticancer effects by preventing interactions between a key signaling protein called 14-3-3ζ and histone H3. This interaction is crucial for cancer cell survival and treatment resistance. By blocking this interaction, benzaldehyde reduced the expression of genes related to epithelial-mesenchymal plasticity.

The study also showed that benzaldehyde synergized with radiation therapy to eliminate previously resistant cancer cells. Furthermore, a derivative of benzaldehyde was found to inhibit the growth of pancreatic tumors and suppress epithelial-to-mesenchymal plasticity, preventing metastasis.

Dr. Saya’s team believes that their results suggest that inhibition of the interaction between 14-3-3ζ and its client proteins by benzaldehyde has the potential to overcome the problem of therapy resistance. This study opens up possibilities for using benzaldehyde as a combinatorial anticancer agent, alongside molecular-targeted therapies.

The implications of this research are significant, offering new hope for patients with therapy-resistant pancreatic cancer. Further studies will be necessary to confirm these findings and explore their potential applications in the clinic.

Continue Reading

Trending