Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Depression

The Dark Side of Too Much Sleep: How Excessive Slumber Can Harm Cognitive Performance, Especially for Those with Depression

Sleeping nine hours or more per night is associated with worse cognitive performance, and it is even more the case for those with depression.

Avatar photo

Published

on

The idea that too much sleep can be bad for you might seem counterintuitive. After all, a good night’s rest is essential for physical and mental rejuvenation. However, research suggests that sleeping nine hours or more per night may actually impair cognitive performance, particularly in individuals with depression.

A study published in Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association found that long sleep duration was associated with poorer global cognition and specific cognitive abilities like memory, visuospatial skills, and executive functions. This association was stronger in people with depressive symptoms, regardless of antidepressant usage.

The researchers, led by Vanessa Young from The University of Texas Health Science Center (UT Health San Antonio), examined the relationship between sleep duration and cognition in 1,853 participants from the Framingham Heart Study. They categorized the participants into four groups: no depressive symptoms, no antidepressants; depressive symptoms without antidepressant use; antidepressant use without depressive symptoms; and depressive symptoms and antidepressant use.

The results showed that long sleep was associated with reduced overall cognitive function, with the strongest effects in those with depressive symptoms using and not using antidepressants. Weaker but significant effects were observed in those without depressive symptoms. No significant associations were observed in participants using antidepressants without depressive symptoms.

This study highlights the importance of sleep as a modifiable risk factor for cognitive decline, particularly in individuals with depression. While a good night’s sleep is essential for overall health, excessive slumber can have negative consequences on cognitive performance.

As Sudha Seshadri, founding director of the Biggs Institute and senior author of the study, notes, “There is increasing recognition of the significance of sleep as a vital physiological process for brain health. Disturbances in sleep duration and patterns have been observed across lifespans and are present in both normal and pathological aging.”

The global council on brain health recommends 7 to 8 hours of nightly sleep for adults to preserve brain health. However, this study suggests that excessive sleep may be detrimental to cognitive performance, particularly in individuals with depression.

Future longitudinal studies are needed to further elucidate the temporal relationship between sleep disturbances and cognitive changes. In the meantime, it’s essential to prioritize a healthy sleep schedule and address any underlying issues, such as depression, to maintain optimal cognitive function.

Agriculture and Food

Standardizing Psychedelic Research: A Breakthrough in Understanding the True Potential of Mind-Altering Drugs

As psychedelics gain traction as potential treatments for mental health disorders, an international study stands to improve the rigor and reliability of clinical research.

Avatar photo

Published

on

Standardizing Psychedelic Research: A Breakthrough in Understanding the True Potential of Mind-Altering Drugs

The use of psychedelics as potential treatments for mental health disorders has gained significant traction in recent years. However, a critical flaw in psychedelic clinical trials has hindered their progress – the failure to properly account for how a person’s mindset and surroundings influence the effects of these substances.

A group of international researchers from McGill University, Imperial College London, and the University of Exeter have tackled this issue by developing a set of guidelines to standardize psychedelic clinical trials. The Reporting of Setting in Psychedelic Clinical Trials (ReSPCT) guidelines are a 30-item checklist that represents the first global agreement on which psychosocial factors have the greatest impact on a psychedelic experience.

“For decades, we’ve known that psychedelics don’t work in isolation,” said co-lead author Chloé Pronovost-Morgan. “The person’s mindset, the therapy room, even the music playing all influence outcomes.” This approach challenges the traditional way psychoactive drugs are typically studied, where scientists try to control or eliminate outside variables to isolate a drug’s effects.

These guidelines recognize that context is crucial and should be studied directly. By offering a standard framework for evaluating and reporting these variables, the ReSPCT guidelines aim to make trial outcomes more consistent and comparable across studies.

Having clear guidelines for contextual considerations is essential to understand the effects of psychedelics and how they work differently from other psychiatric medications,” said co-senior author Leor Roseman. “Our guidelines will also help in replicating results and understanding the true therapeutic potential of psychedelics.”

The lack of standards has had consequences beyond the research lab, Pronovost-Morgan explained. The U.S. Food and Drug Administration recently rejected MDMA-assisted therapy for post-traumatic stress disorder, citing inconsistent reporting across trials as a key reason for the decision.

“There is immense public interest in psychedelic therapies, particularly for individuals suffering from debilitating mental health conditions like PTSD, depression and anxiety, which have not responded to existing treatments,” said co-senior author Kyle Greenway. “Our guidelines offer a new gold standard for psychedelic research, helping bring these treatments to those who need them most.”

The research team is organizing a three-day workshop in October, funded by McGill’s Healthy Brains, Healthy Lives initiative, where leading experts in psychedelics and neuroscience will discuss how the guidelines can be integrated into research and clinical practice.

Continue Reading

Chronic Illness

Unraveling the Mystery of Stress Granules in Neurodegenerative Diseases

Scientists found that stabilizing stress granules suppresses the effects of ALS-causing mutations, correcting previous models that imply stress granules promote amyloid formation.

Avatar photo

Published

on

The study, led by researchers from St. Jude Children’s Research Hospital and Washington University in St. Louis, has made significant strides in understanding the role of biomolecular condensation in the development of neurodegenerative diseases. The research focuses on the interactions that drive the formation of condensates versus amyloid fibrils and their relationship to stress granules.

Stress granules are temporary structures formed by cells under conditions of cellular stress, akin to a ship lowering its sails in a storm. They have been previously implicated as drivers of neurodegenerative diseases such as Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD). The researchers demonstrated that fibrils are the globally stable states of driver proteins, whereas condensates are metastable sinks.

Their findings show that disease-linked mutations diminish condensate metastability, thereby enhancing fibril formation. This suggests that stress granules may not be the primary culprits behind neurodegenerative diseases but rather a protective barrier against them. The researchers also discovered that while fibrils can form on condensates’ surfaces, proteins eventually incorporated into these fibrils stem from outside the condensate.

These discoveries have significant implications for developing potential treatments against neurodegenerative diseases. As lead researcher Tanja Mittag noted, “This information will aid in deciding how to develop potential treatments against a whole spectrum of neurodegenerative diseases.” The study’s findings also highlight the importance of considering stress granules as a protective barrier rather than a crucible for fibril formation.

In conclusion, this research provides crucial insights into the role of stress granules in neurodegenerative diseases. By understanding how these structures interact with fibrils and their relationship to disease-causing mutations, scientists can develop novel therapeutic approaches that may help combat these devastating conditions.

Continue Reading

Children's Health

Uncovering Early Signs of Teen Depression through Blood Markers

Using a novel lab method they developed, researchers have identified nine molecules in the blood that were elevated in teens diagnosed with depression. These molecules also predicted how symptoms might progress over time. The findings of the clinical study could pave the way for earlier detection, before symptoms worsen and become hard to treat.

Avatar photo

Published

on

The discovery of nine specific molecules in the blood has revolutionized our understanding of teen depression. McGill University researchers have developed a novel lab method to detect these molecules, known as microRNAs, which can predict how symptoms might progress over time. This breakthrough could lead to earlier detection and intervention before symptoms worsen and become harder to treat.

The alarming rise in adolescent depression diagnoses has severe consequences, including long-lasting effects on mental health, substance use, social isolation, and treatment resistance. By identifying unique microRNA biomarkers linked specifically to teens, researchers hope to provide an additional objective metric for early identification and care.

A minimally invasive approach was used to collect small blood samples from 62 teenagers, 34 with depression and 28 without. The McGill team developed the lab method to extract and analyze microRNAs from these samples, making it practical and scalable for broader use.

The study’s findings pave the way for using dried blood spots as a tool in psychiatric research, allowing us to track early biological changes linked to mental health using a minimally invasive method. Researchers plan to validate their findings in larger groups of adolescents and explore how these microRNAs interact with genetic and environmental risk factors.

The study was funded by various organizations, including the Douglas Foundation, the National Institute on Drug Abuse, and the Canadian Institutes of Health Research.

Continue Reading

Trending