Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Agriculture and Food

“The Double Edged Sword of Cover Crops: Balancing Crop Yields and Carbon Sequestration”

People have assumed climate change solutions that sequester carbon from the air into soils will also benefit crop yields. But a new study finds that most regenerative farming practices to build soil organic carbon — such as planting cover crops, leaving stems and leaves on the ground and not tilling — actually reduce yields in many situations.

Avatar photo

Published

on

The notion that planting cover crops would not only benefit crop yields but also sequester carbon from the air into soils has been a widely-held assumption in the pursuit of climate change solutions. However, a recent study from Cornell University reveals that this approach may not be as effective as previously thought.

Researchers found that most regenerative farming practices aimed at building soil organic carbon, such as planting cover crops, leaving crop residues on the ground, and reducing tillage, actually reduce yields in many situations. The computer model analysis showed that global adoption of these practices to improve soil health can benefit either greenhouse gas mitigation or crop yields but rarely both.

The predictions will help farmers, policymakers, and sustainability professionals mix and match optimal management plans based on location, as different practices will work better or worse depending on local conditions. For instance, the model predicted that climate mitigation and improved yields had the best chance of occurring together when grains are planted, especially in soils with high clay content or limited nutrients.

“For the first time, we can have contextualized information about how farmers can choose the optimal mix of practices that meet their needs to maintain crop yields while also providing climate change mitigation,” said Dominic Woolf, senior research associate in the School of Integrative Plant Science at Cornell University.

Woolf is principal investigator of the project and senior author of the study published in Nature Climate Change. Shelby McClelland, a postdoctoral researcher at New York University’s Department of Environmental Studies, formerly in Woolf’s lab at Cornell, is the paper’s first author.

The researchers simulated various scenarios through the end of the century, including combinations of four common management practices: planting grass cover crops, planting legume cover crops, zero-tillage, and leaving crop residues in fields. The analysis showed that:

* Grass cover crops combined with no tilling led to the highest potential for limiting greenhouse gases but were the worst for crop yields.
* Legume cover crops with no tilling provided higher crop yields but close to 70% lower climate benefits.
* Reduced yields were found to be most likely in drier climates where cover crops compete for available water.

The study also highlighted that lowering nitrogen inputs into soil may help address nitrous oxide emissions, which are 273 times more potent as a greenhouse gas than CO2. The authors found that in order to maintain crop yields to feed a growing global population, the maximum greenhouse gas mitigation through 2100 would be about 85% lower than if yields were not considered and farming practices centered around optimal climate mitigation strategies.

The research was funded by various organizations, including the National Institute of Food and Agriculture, The Nature Conservancy, the Environmental Defense Fund, and others.

Agriculture and Food

Unearthing Life’s Secrets: Deep Microbes Thrive without Sunlight

Chinese scientists uncovered a powerful energy source for deep Earth microbes: hydrogen and oxidants generated by rock fracturing during earthquakes. The process may also suggest how life could exist on other planets without sunlight.

Avatar photo

Published

on

The discovery that life can exist and even flourish in environments devoid of sunlight has long been a topic of fascination for scientists. A recent study published in Science Advances by Chinese researchers has shed new light on this phenomenon, revealing how microbes in deep subsurface areas derive energy from chemical reactions driven by crustal faulting. This groundbreaking research challenges the conventional wisdom that “all life depends on sunlight” and offers critical insights into the existence of life deep below Earth’s surface.

Led by Professors Hongping He and Jianxi Zhu from the Guangzhou Institute of Geochemistry, a team of researchers simulated crustal faulting activities to understand how free radicals produced during rock fracturing can decompose water, generating hydrogen and oxidants like hydrogen peroxide. These substances create a distinct redox gradient within fracture systems, which can further react with iron in groundwater and rocks – oxidizing ferrous iron (Fe²⁺) to ferric iron (Fe³⁺) or reducing ferric iron (Fe³⁺) to ferrous iron (Fe²⁺), depending on local redox conditions.

In microbe-rich fractures, the researchers found that hydrogen production driven by earthquake-related faulting was up to 100,000 times greater than that from other known pathways, such as serpentinization and radiolysis. This process effectively drives iron’s redox cycle, influencing geochemical processes of elements like carbon, nitrogen, and sulfur – sustaining microbial metabolism in the deep biosphere.

This study has far-reaching implications for our understanding of life on Earth and beyond. Professors He and Zhu note that fracture systems on other Earth-like planets could potentially provide habitable conditions for extraterrestrial life, offering a new avenue for the search for life beyond Earth. The research was financially supported by various sources, including the National Science Fund for Distinguished Young Scholars and the Strategic Priority Research Program of CAS.

In conclusion, this groundbreaking study has challenged our understanding of life’s dependence on sunlight and revealed a previously unknown source of energy for microbes in deep subsurface areas. As we continue to explore the mysteries of the deep biosphere, we may uncover even more secrets that will rewrite the textbooks on life on Earth and beyond.

Continue Reading

Agriculture and Food

Breaking New Ground: Scientists Develop Groundbreaking Chromosome Editing Technology

A group of Chinese scientists has created powerful new tools that allow them to edit large chunks of DNA with incredible accuracy—and without leaving any trace. Using a mix of advanced protein design, AI, and clever genetic tweaks, they’ve overcome major limitations in older gene editing methods. These tools can flip, remove, or insert massive pieces of genetic code in both plants and animals. To prove it works, they engineered rice that’s resistant to herbicides by flipping a huge section of its DNA—something that was nearly impossible before.

Avatar photo

Published

on

The field of genetic engineering has taken a significant leap forward with the development of two new genome editing technologies by a team of Chinese researchers led by Prof. Gao Caixia from the Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences. These innovations, collectively known as Programmable Chromosome Engineering (PCE) systems, have been published in the prestigious journal Cell.

The PCE system is an upgrade to the well-known Cre-Lox technology, which has long been used for precise chromosomal manipulation. However, this older method had three major limitations that hindered its broader application: low recombination efficiency, reversible recombination activity, and the need for a scar (a small DNA fragment) at the editing site.

The research team tackled each of these challenges by developing novel methods to advance the state of this technology. Firstly, they created a high-throughput platform for rapid recombination site modification and proposed an asymmetric Lox site design that reduces reversible recombination activity by over 10-fold.

Secondly, they utilized their recently developed AiCE model – a protein-directed evolution system integrating general inverse folding models with structural and evolutionary constraints – to develop AiCErec. This approach enabled precise optimization of Cre’s multimerization interface, resulting in an engineered variant with a recombination efficiency 3.5 times that of the wild-type Cre.

Lastly, they designed and refined a scarless editing strategy for recombinases by harnessing the high editing efficiency of prime editors to develop Re-pegRNA, a method that uses specifically designed pegRNAs to perform re-prime editing on residual Lox sites, precisely replacing them with the original genomic sequence.

The integration of these three innovations led to the creation of two programmable platforms, PCE and RePCE. These platforms allow flexible programming of insertion positions and orientations for different Lox sites, enabling precise, scarless manipulation of DNA fragments ranging from kilobase to megabase scale in both plant and animal cells.

Key achievements include targeted integration of large DNA fragments up to 18.8 kb, complete replacement of 5-kb DNA sequences, chromosomal inversions spanning 12 Mb, chromosomal deletions of 4 Mb, and whole-chromosome translocations. As a proof of concept, the researchers used this technology to create herbicide-resistant rice germplasm with a 315-kb precise inversion.

This groundbreaking work not only overcomes the historical limitations of the Cre-Lox system but also opens new avenues for precise genome engineering in various organisms, demonstrating its transformative potential for genetic engineering and crop improvement.

Continue Reading

Agriculture and Food

The Ancient Origins of Potatoes Revealed

About 9 million years ago, a wild interspecies fling between tomato-like plants and potato relatives in South America gave rise to one of the world’s most important crops: the potato. Scientists have now traced its roots to a rare natural hybridization that created the tuber, a storage organ that allowed the plant to survive harsh Andean environments and spread rapidly.

Avatar photo

Published

on

The mystery of where potatoes came from has been solved by an international research team. Scientists have uncovered that 9 million years ago, a natural interbreeding event occurred between tomato plants and potato-like species from South America, giving rise to the modern-day potato. This ancient evolutionary event triggered the formation of the tuber, the enlarged underground structure that stores nutrients in plants like potatoes, yams, and taros.

The research team analyzed 450 genomes from cultivated potatoes and 56 wild potato species to solve this long-standing mystery. They found that every potato species contained a stable mix of genetic material from both Etuberosum and tomato plants, suggesting an ancient hybridization between the two. The team also traced the origins of the potato’s key tuber-forming genes, which are a combination of genetic material from each parent.

The discovery reveals how a hybridization event can spark the evolution of new traits, allowing even more species to emerge. This is particularly significant in the context of one of the world’s most important crops, the potato. As one of the world’s most widely cultivated foods, potatoes have long puzzled scientists with their seemingly identical appearance to Etuberosum plants but lack of tubers.

To fill this knowledge gap, researchers analyzed 450 genomes from cultivated potatoes and 56 wild potato species. They found that every potato species contained a stable mix of genetic material from both Etuberosum and tomato plants. This suggests an ancient hybridization event occurred between the two, which gave rise to the modern-day potato.

The team’s findings also reveal how this ancient evolutionary innovation coincided with the rapid uplift of the Andes mountains. As new ecological environments emerged, early potatoes were able to quickly adapt and survive in harsh weather conditions using their tubers as a nutrient storage system. This allowed them to rapidly expand and fill diverse ecological niches from mild grasslands to high and cold alpine meadows in Central and South America.

The discovery of the potato’s ancient origins is a significant breakthrough in understanding how new species emerge. It highlights the importance of natural interbreeding events in shaping the evolution of plants and their adaptation to changing environments.

Continue Reading

Trending