Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Agriculture and Food

The Edible Aquatic Robot: Harnessing Nature’s Power to Monitor Waterways

An edible robot leverages a combination of biodegradable fuel and surface tension to zip around the water’s surface, creating a safe — and nutritious — alternative to environmental monitoring devices made from artificial polymers and electronics.

Avatar photo

Published

on

The Edible Aquatic Robot is a groundbreaking innovation developed by EPFL scientists, who have successfully created a biodegradable and non-toxic device to monitor waterways. This remarkable invention leverages the Marangoni effect, which allows aquatic insects to propel themselves across the surface of water, to create a safe and efficient alternative to traditional environmental monitoring devices made from artificial polymers and electronics.

The robot’s clever design takes advantage of a chemical reaction within a tiny detachable chamber that produces carbon dioxide gas. This gas enters a fuel channel, forcing the fuel out and creating a sudden reduction in water surface tension that propels the robot forward. The device can move freely around the surface of the water for several minutes, making it an ideal solution for monitoring waterways.

What makes this invention even more remarkable is its edible nature. The robot’s outer structure is made from fish food with a 30% higher protein content and 8% lower fat content than commercial pellets. This not only provides strength and rigidity to the device but also acts as nourishment for aquatic wildlife at the end of its lifetime.

The EPFL team envisions deploying these robots in large numbers, each equipped with biodegradable sensors to collect environmental data such as water pH, temperature, pollutants, and microorganisms. The researchers have even fabricated ‘left turning’ and ‘right turning’ variants by altering the fuel channel’s asymmetric design, allowing them to disperse the robots across the water’s surface.

This work is part of a larger innovation in edible robotics, with the Laboratory of Intelligent Systems publishing several papers on edible devices, including edible soft actuators as food manipulators and pet food, fluidic circuits for edible computation, and edible conductive ink for monitoring crop growth. The potential applications of these devices are vast, from stimulating cognitive development in aquatic pets to delivering nutrients or medication to fish.

As EPFL PhD student Shuhang Zhang notes, “The replacement of electronic waste with biodegradable materials is the subject of intensive study, but edible materials with targeted nutritional profiles and function have barely been considered, and open up a world of opportunities for human and animal health.” This groundbreaking innovation in edible aquatic robots has the potential to revolutionize the way we monitor waterways and promote sustainable development.

Agriculture and Food

Unearthing Life’s Secrets: Deep Microbes Thrive without Sunlight

Chinese scientists uncovered a powerful energy source for deep Earth microbes: hydrogen and oxidants generated by rock fracturing during earthquakes. The process may also suggest how life could exist on other planets without sunlight.

Avatar photo

Published

on

The discovery that life can exist and even flourish in environments devoid of sunlight has long been a topic of fascination for scientists. A recent study published in Science Advances by Chinese researchers has shed new light on this phenomenon, revealing how microbes in deep subsurface areas derive energy from chemical reactions driven by crustal faulting. This groundbreaking research challenges the conventional wisdom that “all life depends on sunlight” and offers critical insights into the existence of life deep below Earth’s surface.

Led by Professors Hongping He and Jianxi Zhu from the Guangzhou Institute of Geochemistry, a team of researchers simulated crustal faulting activities to understand how free radicals produced during rock fracturing can decompose water, generating hydrogen and oxidants like hydrogen peroxide. These substances create a distinct redox gradient within fracture systems, which can further react with iron in groundwater and rocks – oxidizing ferrous iron (Fe²⁺) to ferric iron (Fe³⁺) or reducing ferric iron (Fe³⁺) to ferrous iron (Fe²⁺), depending on local redox conditions.

In microbe-rich fractures, the researchers found that hydrogen production driven by earthquake-related faulting was up to 100,000 times greater than that from other known pathways, such as serpentinization and radiolysis. This process effectively drives iron’s redox cycle, influencing geochemical processes of elements like carbon, nitrogen, and sulfur – sustaining microbial metabolism in the deep biosphere.

This study has far-reaching implications for our understanding of life on Earth and beyond. Professors He and Zhu note that fracture systems on other Earth-like planets could potentially provide habitable conditions for extraterrestrial life, offering a new avenue for the search for life beyond Earth. The research was financially supported by various sources, including the National Science Fund for Distinguished Young Scholars and the Strategic Priority Research Program of CAS.

In conclusion, this groundbreaking study has challenged our understanding of life’s dependence on sunlight and revealed a previously unknown source of energy for microbes in deep subsurface areas. As we continue to explore the mysteries of the deep biosphere, we may uncover even more secrets that will rewrite the textbooks on life on Earth and beyond.

Continue Reading

Agriculture and Food

Breaking New Ground: Scientists Develop Groundbreaking Chromosome Editing Technology

A group of Chinese scientists has created powerful new tools that allow them to edit large chunks of DNA with incredible accuracy—and without leaving any trace. Using a mix of advanced protein design, AI, and clever genetic tweaks, they’ve overcome major limitations in older gene editing methods. These tools can flip, remove, or insert massive pieces of genetic code in both plants and animals. To prove it works, they engineered rice that’s resistant to herbicides by flipping a huge section of its DNA—something that was nearly impossible before.

Avatar photo

Published

on

The field of genetic engineering has taken a significant leap forward with the development of two new genome editing technologies by a team of Chinese researchers led by Prof. Gao Caixia from the Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences. These innovations, collectively known as Programmable Chromosome Engineering (PCE) systems, have been published in the prestigious journal Cell.

The PCE system is an upgrade to the well-known Cre-Lox technology, which has long been used for precise chromosomal manipulation. However, this older method had three major limitations that hindered its broader application: low recombination efficiency, reversible recombination activity, and the need for a scar (a small DNA fragment) at the editing site.

The research team tackled each of these challenges by developing novel methods to advance the state of this technology. Firstly, they created a high-throughput platform for rapid recombination site modification and proposed an asymmetric Lox site design that reduces reversible recombination activity by over 10-fold.

Secondly, they utilized their recently developed AiCE model – a protein-directed evolution system integrating general inverse folding models with structural and evolutionary constraints – to develop AiCErec. This approach enabled precise optimization of Cre’s multimerization interface, resulting in an engineered variant with a recombination efficiency 3.5 times that of the wild-type Cre.

Lastly, they designed and refined a scarless editing strategy for recombinases by harnessing the high editing efficiency of prime editors to develop Re-pegRNA, a method that uses specifically designed pegRNAs to perform re-prime editing on residual Lox sites, precisely replacing them with the original genomic sequence.

The integration of these three innovations led to the creation of two programmable platforms, PCE and RePCE. These platforms allow flexible programming of insertion positions and orientations for different Lox sites, enabling precise, scarless manipulation of DNA fragments ranging from kilobase to megabase scale in both plant and animal cells.

Key achievements include targeted integration of large DNA fragments up to 18.8 kb, complete replacement of 5-kb DNA sequences, chromosomal inversions spanning 12 Mb, chromosomal deletions of 4 Mb, and whole-chromosome translocations. As a proof of concept, the researchers used this technology to create herbicide-resistant rice germplasm with a 315-kb precise inversion.

This groundbreaking work not only overcomes the historical limitations of the Cre-Lox system but also opens new avenues for precise genome engineering in various organisms, demonstrating its transformative potential for genetic engineering and crop improvement.

Continue Reading

Agriculture and Food

The Ancient Origins of Potatoes Revealed

About 9 million years ago, a wild interspecies fling between tomato-like plants and potato relatives in South America gave rise to one of the world’s most important crops: the potato. Scientists have now traced its roots to a rare natural hybridization that created the tuber, a storage organ that allowed the plant to survive harsh Andean environments and spread rapidly.

Avatar photo

Published

on

The mystery of where potatoes came from has been solved by an international research team. Scientists have uncovered that 9 million years ago, a natural interbreeding event occurred between tomato plants and potato-like species from South America, giving rise to the modern-day potato. This ancient evolutionary event triggered the formation of the tuber, the enlarged underground structure that stores nutrients in plants like potatoes, yams, and taros.

The research team analyzed 450 genomes from cultivated potatoes and 56 wild potato species to solve this long-standing mystery. They found that every potato species contained a stable mix of genetic material from both Etuberosum and tomato plants, suggesting an ancient hybridization between the two. The team also traced the origins of the potato’s key tuber-forming genes, which are a combination of genetic material from each parent.

The discovery reveals how a hybridization event can spark the evolution of new traits, allowing even more species to emerge. This is particularly significant in the context of one of the world’s most important crops, the potato. As one of the world’s most widely cultivated foods, potatoes have long puzzled scientists with their seemingly identical appearance to Etuberosum plants but lack of tubers.

To fill this knowledge gap, researchers analyzed 450 genomes from cultivated potatoes and 56 wild potato species. They found that every potato species contained a stable mix of genetic material from both Etuberosum and tomato plants. This suggests an ancient hybridization event occurred between the two, which gave rise to the modern-day potato.

The team’s findings also reveal how this ancient evolutionary innovation coincided with the rapid uplift of the Andes mountains. As new ecological environments emerged, early potatoes were able to quickly adapt and survive in harsh weather conditions using their tubers as a nutrient storage system. This allowed them to rapidly expand and fill diverse ecological niches from mild grasslands to high and cold alpine meadows in Central and South America.

The discovery of the potato’s ancient origins is a significant breakthrough in understanding how new species emerge. It highlights the importance of natural interbreeding events in shaping the evolution of plants and their adaptation to changing environments.

Continue Reading

Trending