Connect with us

Biochemistry

Unlocking New Possibilities: Muonic Atoms Reveal Hidden Secrets of Nuclear Physics

Researchers have combined theory and experiments to show that nuclear polarization does not limit studies of muonic atoms, clearing the way for new nuclear physics experiments.

Avatar photo

Published

on

The discovery of muonic atoms has long fascinated scientists, offering a unique window into the structure and properties of atomic nuclei. Recently, researchers at the University of Queensland have made a groundbreaking breakthrough that clears the way for new experiments with these exotic atoms. In this article, we’ll delve into the world of muonic physics and explore what this discovery means for our understanding of nuclear structure.

Muons are heavy versions of electrons that can be produced by cosmic rays or in laboratory settings. When muons orbit the nucleus, they form muonic atoms, which provide a much more detailed view of the nucleus’s internal structure than regular atomic electrons. However, experiments using muonic atoms have been hindered by uncertainty over how nuclear polarization affects their hyperfine structure – a small energy splitting within the atom.

Nuclear polarization is a phenomenon where the nucleus distorts its shape due to external influences, similar to how the moon creates tides on Earth. In the case of muonic atoms, this effect was thought to be significant enough to limit studies of their hyperfine structure. But researchers at the University of Queensland have now shown that the nuclear polarization effect in muonic atoms is actually much smaller than previously believed.

This breakthrough was achieved through a combination of theoretical calculations and experiments led by Associate Professor Jacinda Ginges and her team. The results were independently confirmed by Dr. Natalia Oreshkina from the Max Planck Institute for Nuclear Physics in Germany, providing strong evidence that nuclear polarization does not significantly impact the study of muonic atoms.

The implications of this discovery are significant. It opens up new possibilities for experiments with muonic atoms, allowing scientists to gain a deeper understanding of nuclear structure and fundamental physics. The Paul Scherrer Institute in Zurich is already planning research programs using muonic atoms, which will further our knowledge of these exotic atoms and their potential applications.

In conclusion, the discovery of muonic atoms has long held promise for unlocking new secrets of nuclear physics. This recent breakthrough clears the way for new experiments with these fascinating particles, offering a chance to explore the mysteries of atomic nuclei in greater detail than ever before.

Biochemistry

A New Therapy for Heart Attacks: Injecting a Protein-Like Polymer to Promote Healing

Researchers have developed a new therapy that can be injected intravenously right after a heart attack to promote healing and prevent heart failure. The therapy both prompts the immune system to encourage tissue repair and promotes survival of heart muscle cells after a heart attack. Researchers tested the therapy in rats and showed that it is effective up to five weeks after injection.

Avatar photo

Published

on

The medical community has made significant strides in understanding the complexities of the human body. Researchers at the University of California San Diego and Northwestern University have developed an innovative therapy that can be injected intravenously after a heart attack to encourage tissue repair and prevent heart failure. This groundbreaking approach aims to intervene early, potentially keeping patients from ultimately going into heart failure.

The research team, led by bioengineers and chemists, published their findings in the April 25 issue of Advanced Materials. They demonstrated that this therapy is effective up to five weeks after injection in rat models. The protein-like polymer (PLP) platform mimics a key protein called Nrf2, which cells rely on to resist degradation brought on by inflammation.

After a heart attack, the interaction between two proteins – Nrf2 and KEAP1 – must be blocked for tissues to heal properly. When KEAP1 binds with Nrf2, it degrades the latter, hindering tissue repair. By injecting the PLP platform intravenously, researchers can prevent this degradation process, allowing cells to function normally.

The rat models injected with the PLP platform showed better cardiac function and significantly more healing in their heart muscle tissue compared to those receiving a saline solution. Other tests also revealed that genes promoting tissue healing were expressed more in the treated animals.

Researchers describe this study as a proof of concept, aiming to optimize the design and dosage before moving on to larger mammal trials. This therapy has the potential for broader applications beyond heart attacks, addressing diseases such as macular degeneration, multiple sclerosis, and kidney disease.

The innovative PLP platform could transform the treatment landscape by providing an effective solution for a critical clinical need – preventing heart failure after a heart attack. This breakthrough demonstrates the power of interdisciplinary research in tackling complex medical challenges.

Sources:

* Gianneschi, N., et al. (2023). A protein-like polymer platform to intervene with KEAP1-Nrf2 interactions promotes cardiac repair and function in a rat model of myocardial infarction. Advanced Materials, 35(14), e2205550.
* National Institutes of Health National Heart, Lung, and Blood Institute (NHLBI) research grants 2R01HL139001, R00 CA248715.

Continue Reading

Biochemistry

Fold, Reform, Repeat: Engineer Reinvents Ceramics with Origami-Inspired 3D Printing

In a breakthrough that blends ancient design with modern materials science, researchers have developed a new class of ceramic structures that can bend under pressure — without breaking.

Avatar photo

Published

on

The breakthrough by researchers at the University of Houston has transformed ceramics from fragile and brittle materials into tough, flexible structures. By blending ancient design with modern materials science, they have created a new class of ceramic structures that can bend under pressure without breaking.

Traditionally, ceramics were known for their inability to withstand stress, making them unsuitable for high-impact or adaptive applications. However, this limitation may soon change as the UH researchers have shown that origami-inspired shapes with a soft polymer coating can transform fragile ceramic materials into resilient and adaptable structures.

Led by Maksud Rahman, assistant professor of mechanical and aerospace engineering, and Md Shajedul Hoque Thakur, postdoctoral fellow, the team has successfully 3D printed ceramic structures based on the Miura-ori origami pattern. This innovative approach allowed them to create materials that can handle stress in ways ordinary ceramics cannot.

The coated structures flexed and recovered when compressed in different directions, while their uncoated counterparts cracked or broke. The researchers tested these structures under both static and cyclic compression, with computer simulations backing up their experiments. The results consistently showed greater toughness in the coated versions, especially in directions where the original ceramic was weakest.

“This work demonstrates how folding patterns can unlock new functionalities in even the most fragile materials,” said Rahman. “Origami is more than an art – it’s a powerful design tool that can reshape how we approach challenges in both biomedical and engineering fields.”

The potential applications for this technology are vast, ranging from medical prosthetics to impact-resistant components in aerospace and robotics. With their newfound ability to create lightweight yet tough materials, researchers may soon revolutionize various industries and transform ceramics into versatile and reliable materials for future innovations.

Continue Reading

Biochemistry

A New Era of Tissue Engineering: FRESH Bioprinting Revolutionizes the Creation of Vascularized Tissues

Using their novel FRESH 3D bioprinting technique, which allows for printing of soft living cells and tissues, a lab has built a tissue model entirely out of collagen.

Avatar photo

Published

on

The world of tissue engineering has just taken a significant leap forward with the advent of Freeform Reversible Embedding of Suspended Hydrogels (FRESH) 3D bioprinting. This innovative technique, developed by Carnegie Mellon’s Feinberg lab, allows for the printing of soft living cells and tissues with unprecedented structural resolution and fidelity. The result is a microphysiologic system entirely made out of collagen, cells, and other proteins – a first-of-its-kind achievement that expands the capabilities of researchers to study disease and build tissues for therapy.

Traditionally, tiny models of human tissue have been made using synthetic materials like silicone rubber or plastics, but these cannot fully recreate normal biology. With FRESH bioprinting, researchers can now create microfluidic systems in a Petri dish entirely out of collagen, cells, and other proteins – a major breakthrough that will revolutionize the field.

“We’re hoping to better understand what we need to print,” said Adam Feinberg, a professor of biomedical engineering and materials science & engineering at Carnegie Mellon University. “Ultimately, we want the tissue to better mimic the disease of interest or ultimately, have the right function, so when we implant it in the body as a therapy, it’ll do exactly what we want.”

The implications of this technology are vast, with potential applications in treating Type 1 diabetes and other diseases. FluidForm Bio, a Carnegie Mellon University spinout company, has already demonstrated that they can cure Type 1 diabetes in animal models using this technology, and plans to start clinical trials in human patients soon.

As Feinberg emphasized, “The work we’re doing today is taking this advanced fabrication capability and combining it with computational modeling and machine learning… We see this as a base platform for building more complex and vascularized tissue systems.”

With FRESH bioprinting, the possibilities are endless. This technology has the potential to change the face of medicine and improve countless lives. As researchers continue to push the boundaries of what is possible, one thing is certain – we will witness some incredible breakthroughs in the years to come.

Continue Reading

Trending