Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Drought Research

Unlocking the Mystery of Nanoplastics: A New Tool for Understanding Their Toxicity

While the threat that microplastics pose to human and ecological health has been richly documented and is well known, nanoplastics, which are smaller than one micrometer (1/50th the thickness of an average human hair), are far more reactive, far more mobile and vastly more capable of crossing biological membranes. Yet, because they are so tiny and so mobile, researchers don’t yet have an accurate understanding of just how toxic these particles are.

Avatar photo

Published

on

The threat posed by microplastics is well-documented, but the impact of nanoplastics on human health and the environment remains a mystery. These tiny particles, smaller than one micrometer, are highly reactive and mobile, making them difficult to track and analyze. To understand their toxicology, researchers need a reliable tool that can quantify their concentration in a given sample and identify the specific plastics present.

A team of scientists led by the University of Massachusetts Amherst has developed an innovative method called OM-SERS (Optical Manipulation and Surface-Enhanced Raman Scattering). This technique uses lasers, gold nanoparticles, and water to attract nanoplastics and analyze their composition. The process is efficient, reliable, and flexible, allowing researchers to study nanoplastics in various environments.

The OM-SERS method involves placing gold nanoparticles in a small water sample, which attracts the nanoplastics present. Once the particles are gathered around the gold center, the team conducts a sensitive analysis to identify the types of plastics and their concentrations. This technique can be used with small samples and can analyze nanoplastics in soil, plant tissues, or human bodies.

The OM-SERS system has been tested on various samples, including river water, ocean water from an aquaculture farm, and beach sediment. The results show that this method is effective in detecting and analyzing nanoplastics, which can be used to study their presence in different environments.

Baoshan Xing, a professor at the University of Massachusetts Amherst, emphasizes the importance of understanding the toxicology of nanoplastics: “Because nanoplastics are so tiny, they have a much higher overall surface area and functional groups than microplastics, which means more of them can concentrate in water, soil, and body tissues. They travel more easily and can wind up in more places in the environment and in our bodies.”

The development of OM-SERS is a significant step towards understanding the impact of nanoplastics on human health and the environment. This tool will enable researchers to study the presence and behavior of nanoplastics in various environments, which can inform policies and regulations aimed at mitigating their effects.

In conclusion, the OM-SERS method provides a powerful tool for studying nanoplastics, allowing researchers to detect and analyze these tiny particles in various environments. This innovation has the potential to shed light on the mysteries surrounding nanoplastics and inform strategies to mitigate their impact on human health and the environment.

Atmosphere

Biofilms Hold Key to Stopping Microplastic Build-up in Rivers and Oceans

Where do microplastics really go after entering the environment? MIT researchers discovered that sticky biofilms naturally produced by bacteria play a surprising role in preventing microplastics from accumulating in riverbeds. Instead of trapping the particles, these biofilms actually keep them loose and exposed, making them easier for flowing water to carry away. This insight could help target cleanup efforts more effectively and identify hidden pollution hotspots.

Avatar photo

Published

on

The accumulation of microplastics in our environment is a growing concern. These tiny particles have been found to harm marine life, contaminate food chains, and even enter our own bodies through various pathways. However, predicting where these particles will accumulate and therefore where remediation efforts should focus has been difficult due to the many factors contributing to their dispersal and deposition.

New research from MIT shows that one key factor in determining where microparticles are likely to build up is related to the presence of biofilms. These thin, sticky biopolymer layers are shed by microorganisms and can accumulate on surfaces, including riverbeds or seashores. The study found that when these particles land on sediment infused with biofilms, they are more likely to be resuspended by flowing water and carried away.

The research involved a flow tank with a bottom lined with fine sand, sometimes mixed with biological material simulating natural biofilms. Water mixed with tiny plastic particles was pumped through the tank for three hours, and then the bed surface was photographed under ultraviolet light that caused the plastic particles to fluoresce, allowing a quantitative measurement of their concentration.

The results revealed two different phenomena affecting how much plastic accumulated on the different surfaces. Immediately around the rods simulating above-ground roots, turbulence prevented particle deposition. Additionally, as the amount of simulated biofilms in the sediment bed increased, the accumulation of particles also decreased.

The researchers concluded that the biofilms filled up the spaces between the sand grains, leaving less room for the microparticles to fit in. The particles were more exposed because they penetrated less deeply into the sand grains, making them easier to resuspend and carry away by the flowing water.

This research provides a “nice lens” to offer guidance on where to find microplastic hotspots versus not-so-hot areas. For example, in mangrove ecosystems, microplastics may accumulate preferentially in the outer edges, which tend to be sandy, while the interior zones have sediment with more biofilm. This suggests that the sandy outer regions may be potential hotspots for microplastic accumulation.

The work was supported by Shell International Exploration and Production through the MIT Energy Initiative. While other factors like turbulence or roughness of the bottom surface complicate this, it provides a framework to categorize habitats and prioritize monitoring and protection efforts.

Continue Reading

Drought

The Double Whammy of Extreme Weather and Habitat Loss on Amphibians

Frogs, salamanders, and other amphibians are not just battling habitat loss and pollution they’re now also contending with increasingly brutal heat waves and droughts. A sweeping 40-year study shows a direct link between the rise in extreme weather events and the growing number of species landing on the endangered list. Europe, the Amazon, and Madagascar have become danger zones, with amphibians unable to adapt quickly enough. But there s hope scientists are calling for focused conservation efforts like habitat restoration and micro-refuges to help these vulnerable creatures survive.

Avatar photo

Published

on

The article reveals that extreme weather events are exacerbating the decline of amphibian populations worldwide. A study from the Institute for Ecology, Evolution, and Diversity analyzed global weather data over 40 years to determine how heat waves, droughts, and cold spells have affected the geographical distribution of more than 7,000 amphibian species.

The results show a clear correlation between increased extreme weather events and deteriorating threat status on the Red List. Dr. Evan Twomey, lead author of the study, explains that amphibians’ dependence on temporary wetlands for breeding makes them vulnerable to droughts and temperature shifts. “Our analyses show the direct connection between the increase in extreme weather events and the decline of amphibian populations,” he states.

Three regions are particularly affected: Europe, where droughts have taken a toll on salamander populations; the Amazon region, where heat waves have impacted frog species; and Madagascar, where both heat waves and droughts have had devastating effects. In Central Europe, future climate projections indicate an increase in drought periods, further exacerbating the situation for native true salamanders.

The study highlights the urgent need for targeted conservation measures to protect threatened amphibian species. These include creating small protected areas and improving wetlands to ensure optimal living conditions. Creating moist retreat sites, such as using pipes or boards, also provides these animals with opportunities to withdraw during dry periods.

As indicators of ecosystem health, the protection of amphibians is paramount for preserving biodiversity. The study’s findings provide essential foundations for adapted conservation strategies in particularly affected regions, emphasizing the importance of taking action to mitigate the devastating impact of extreme weather and habitat loss on amphibian populations.

Continue Reading

Acid Rain

The Hidden Impact of Anoxic Pockets on Sandy Shores

Some microbes living on sand grains use up all the oxygen around them. Their neighbors, left without oxygen, make the best of it: They use nitrate in the surrounding water for denitrification — a process hardly possible when oxygen is present. This denitrification in sandy sediments in well-oxygenated waters can substantially contribute to nitrogen loss in the oceans.

Avatar photo

Published

on

The Hidden Impact of Anoxic Pockets on Sandy Shores

Human activities have dramatically increased nitrogen inputs into coastal seas, leading to a significant amount of this human-derived nitrogen being removed by microorganisms in coastal sands through denitrification. However, research has shown that this process can also occur in oxygenated sands, and scientists from the Max Planck Institute for Marine Microbiology in Bremen, Germany, have now revealed how this happens.

The scientists used a method called microfluidic imaging to visualize the diverse and uneven distribution of microbes and the oxygen dynamics on extremely small scales. “Tens of thousands of microorganisms live on a single grain of sand,” explains Farooq Moin Jalaluddin from the Max Planck Institute for Marine Microbiology. The researchers could show that some microbes consume more oxygen than is resupplied by the surrounding pore water, creating anoxic pockets on the surface of the sand grains.

These anoxic microenvironments have so far been invisible to conventional techniques but have a dramatic effect: “Our estimates based on model simulations show that anaerobic denitrification in these anoxic pockets can account for up to one-third of the total denitrification in oxygenated sands,” says Jalaluddin.

The researchers calculated how relevant this newly researched form of nitrogen removal is on a global scale and found that it could account for up to one-third of total nitrogen loss in silicate shelf sands. Consequently, this denitrification is a substantial sink for anthropogenic nitrogen entering the oceans.

In conclusion, the hidden impact of anoxic pockets on sandy shores has been revealed by scientists, highlighting the importance of these microenvironments in removing nitrogen from coastal seas and emphasizing the need to consider them when assessing the overall nitrogen budget of our planet.

Continue Reading

Trending