Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Cosmetics

Low-Dose Antibiotics May Be Just as Effective for Treating Rare Hair Loss Disorder

Small amounts of a common antibiotic and anti-inflammatory drug can curb symptoms where a misplaced immune reaction (e.g., autoimmunity) can cause permanent hair loss, a new study shows. This regimen may also come with fewer side effects than higher doses of the medication.

Avatar photo

Published

on

Low-dose antibiotics may be just as effective for treating a rare type of chronic hair loss disorder, according to a new study. Researchers at NYU Langone Health found that patients with lymphocytic scarring alopecia, a condition in which the body’s immune cells damage hair follicles, experienced similar improvements in symptoms when taking lower doses of doxycycline, an antibiotic commonly used to treat this condition.

The study, published in the Journal of the American Academy of Dermatology, analyzed data from 241 patients with scarring alopecia treated at NYU Langone Health between 2009 and 2023. The researchers compared two groups: those who took lower doses (20mg taken twice daily) of doxycycline and those who took higher doses (as much as 100mg taken twice daily). They found no significant difference in the effectiveness of the treatment for either group.

The study’s findings suggest that physicians can prescribe lower doses of doxycycline to patients struggling with lymphocytic scarring alopecia without compromising the efficacy and anti-inflammatory benefit of the therapy. This is a significant advantage, as higher doses of the drug can trigger nausea, vomiting, and rashes in some patients.

In addition to the improved treatment outcomes, the study also found that lower doses of doxycycline may be less likely to harm the beneficial bacteria that live in the digestive tract and bolster the body’s defenses against disease-causing microbes. Past studies have shown that drug doses below 40 milligrams are less risky for these helpful microbes.

The researchers note that their findings offer another avenue for healthcare providers to protect patients from harm caused by unnecessary antibiotic use and address the rise of drug-resistant strains of microbes. They also highlight the importance of further research into the triggers that cause lymphocytic scarring alopecia, which remain poorly understood.

Study funding was provided by NYU Langone Health. The study’s authors include Carli Needle, BA; Anna Brinks, BA; and Kristen Lo Sicco, MD, among others.

Alternative Medicine

“Skin in a Syringe”: Breakthrough Technology Heals Burns without Scars

Scientists in Sweden have developed a groundbreaking “skin in a syringe” — a gel packed with live cells that can be applied directly to wounds or even 3D-printed into skin grafts. Designed to help the body build functional dermis rather than scar tissue, the innovation combines fibroblast cells on gelatin beads with a hyaluronic acid gel, held together using click chemistry. In a parallel advance, the team also created elastic hydrogel threads that can form tiny, fluid-carrying channels, paving the way for artificial tissues and organoid development.

Avatar photo

Published

on

Scientists at Linköping University in Sweden have developed a revolutionary technology that can heal burns without leaving scars. Dubbed “skin in a syringe,” this innovative approach uses 3D-printed skin transplants made from gel containing live cells.

The study, led by researchers Johan Junker and Daniel Aili, aimed to create new skin that doesn’t become scar tissue but a functioning dermis. The dermis is the thicker layer of skin beneath the epidermis, which contains blood vessels, nerves, hair follicles, and other essential structures for skin function and elasticity.

To achieve this, the researchers used click chemistry to connect gelatine beads with hyaluronic acid, creating a liquid that can be applied to wounds using a syringe. The gel becomes gel-like again once applied, making it possible to 3D-print the cells in it.

In the current study, small pucks made from this technology were placed under the skin of mice, showing promising results. The cells survived and produced substances needed to create new dermis, with blood vessels forming in the grafts. This breakthrough has significant implications for burn patients, who often suffer from severe scarring due to traditional transplant methods.

The LiU researchers also developed a method to make threads from hydrogels, which can be used to build mini-tubes or perfusable channels. These tubes can be used to pump fluid through or have blood vessel cells grow in them, potentially solving the problem of blood vessel supply in tissue models.

This research has received funding from various organizations, including the Erling-Persson Foundation and the European Research Council (ERC). The study’s findings were published in Advanced Healthcare Materials.

Continue Reading

Alternative Medicine

Patients Who Undergo Tummy Tuck Surgery Continue to Lose Weight Years Later, Study Finds

Patients who undergo tummy tuck surgery may be in for more than just cosmetic changes — a new study shows they often keep losing weight for years after the procedure. Researchers followed 188 patients and found consistent weight reduction up to five years later, especially in those with higher initial BMIs. Interestingly, lifestyle improvements, such as better diet and exercise habits, may play a key role in this surprising long-term effect. This could mean tummy tucks aren’t just sculpting bodies — they may be reshaping lives.

Avatar photo

Published

on

A recent study published in the journal Plastic and Reconstructive Surgery has found that patients who undergo “tummy tuck” surgery (abdominoplasty) to remove excess skin and tissue after weight loss continue to lose weight in the months and years after surgery. The study, which followed 188 patients for up to five years after their procedure, found that many of these individuals were able to achieve significant and sustained weight loss.

According to the researchers, who were led by Dr. John Y.S. Kim from Northwestern University Feinberg School of Medicine in Chicago, patients who underwent abdominoplasty surgery experienced an average weight loss of between five and six pounds at three to six months after their procedure. This weight loss continued over time, with an average loss of about five pounds between one and four years after surgery.

By the time of their five-year follow-up, patients had lost an average of nearly ten pounds, which is a significant reduction in body mass index (BMI). The researchers also found that about 60% of patients experienced weight loss during this period. Furthermore, they discovered that older patients, those who underwent liposuction or lipectomy at the same time as their abdominoplasty, and those who had never smoked were more likely to continue losing weight after surgery.

While the study’s findings are encouraging for individuals considering abdominoplasty surgery, it is essential to note that the researchers could not definitively explain why patients continued to lose weight after surgery. However, they suggested that patients may have developed healthy habits centered around nutrition and exercise that contributed to their long-term weight loss.

Overall, this study provides valuable new evidence that post-abdominoplasty weight reduction is a quantifiable phenomenon and highlights the need for further research into factors associated with sustained weight loss in patients who undergo abdominoplasty surgery.

Continue Reading

Air Quality

The Unseen Impact of Personal Care Products on Indoor Air Chemistry

In 2022 a team discovered that high levels of OH radicals can be generated indoors, simply due to the presence of people and ozone. This means: People generate their own oxidation field and change the indoor air chemistry around them within their own personal space. Now, in a follow-up study again in cooperation with an international research team, they found that commonly applied personal care products substantially suppress a human’s production of OH radicals. These findings have implications for the indoor chemistry, the air quality of occupied spaces, and human health, since many of the chemicals in our immediate vicinity are transformed by this field.

Avatar photo

Published

on

The article reveals that personal care products can significantly suppress the human oxidation field, which is generated by people’s presence indoors. This field changes the indoor air chemistry around us, affecting our intake of chemicals and impacting human health.

Researchers from the Max Planck Institute for Chemistry conducted a study in 2022 that found high levels of OH radicals can be generated indoors due to the presence of people and ozone. A follow-up study showed that commonly used personal care products substantially suppress a person’s production of OH radicals, with implications for indoor chemistry, air quality, and human health.

The study involved an international research team, including scientists from the University of California (Irvine, USA) and the Pennsylvania State University. They developed a state-of-the-art chemical model to simulate concentrations of chemical compounds near humans in the indoor environment.

The researchers examined how body lotion and perfume affect the human oxidation field. When applied to the skin, they found that both products suppressed the production of OH radicals, with the primary component of perfume (ethanol) reacting with OH radicals. Body lotion also contributed to suppressing the human oxidation field by reacting with ozone on the skin.

The study suggests that fragrances impact the OH reactivity and concentration over shorter time periods, whereas lotions show more persistent effects consistent with the rate of emissions of organic compounds from these personal care products.

Implications for indoor chemistry include the suppression of the personal human oxidation field when applying a fragrance indoors. Lotions are expected to suppress the human oxidation field due to dilution of skin oil constituents and reduced interaction between O3 and the skin, as well as the presence of preservatives acting as antimicrobial agents.

The study was part of the ICHEAR project (Indoor Chemical Human Emissions and Reactivity Project), which brought together international scientists from Denmark, USA, and Germany. The modeling was part of the MOCCIE project based in University of California Irvine and the Pennsylvania State University, funded by grants from the A. P. Sloan foundation.

In conclusion, personal care products can have a significant impact on indoor air chemistry, suppressing the human oxidation field that affects our intake of chemicals and human health. As we spend up to 90% of our time indoors, it is essential to be aware of this phenomenon and consider the potential implications for our well-being.

The experiments were conducted in a climate-controlled chamber at the Technical University of Denmark (DTU) in Copenhagen, where four test subjects stayed under standardized conditions. Ozone was added to the chamber air inflow, and the team determined the OH concentrations indirectly by quantifying individual OH sources and overall loss rates of OH. By combining air measurements with model simulations, they calculated the effect of lotion and fragrance on the human oxidation field.

The findings have implications for indoor chemistry, highlighting the need for further research into the properties and effects of chemical compounds in our breathing zone.

Continue Reading

Trending