Connect with us

Chemistry

Breaking Down Redox Reactions: Unraveling the Secrets of Proton-Coupled Electron Transfer with High Pressure

Chemists reveal method for differentiating PCET mechanisms — a key step for steering fundamental energy conversion and redox catalysis processes.

Avatar photo

Published

on

Redox reactions are the backbone of many vital processes that sustain life on Earth. From cellular respiration to photosynthesis, these chemical reactions play a crucial role in harnessing energy and converting it into forms that can be used by living organisms. In addition to their importance in biology, redox reactions also have significant implications for various fields such as chemistry, biochemistry, and the use of light for energy generation.

A team of researchers led by Professor Ivana Ivanović-Burmazović from LMU Munich and Professor Dirk Guldi from FAU Erlangen-Nürnberg has made a groundbreaking discovery in understanding the fundamental principles of redox reactions. Using an innovative approach based on high pressures, they have successfully differentiated between two related reaction mechanisms: concerted and stepwise proton-coupled electron transfer (PCET).

In PCET reactions, electrons are transferred between molecules while protons are moved simultaneously to prevent changes in charge, making it the most efficient way for a redox reaction to occur. However, there were previously no direct methods to distinguish between the two mechanisms with certainty.

The researchers investigated the effect of pressure on the light-induced reaction of a photosensitive molecule in solution. They applied pressures up to 1,200 atmospheres and observed changes in the reaction rate. If the reaction rate remained unchanged under high pressure, it indicated a concerted mechanism, where electrons and protons are transferred simultaneously without changing the charge or solvation sphere.

Conversely, if the reaction rate changed under high pressure, it suggested a stepwise process, where electrons and protons were transferred separately, causing changes in the charge and solvation sphere. To their surprise, the researchers found that they could influence the process by increasing the pressure, steering the reaction from a stepwise mechanism toward a concerted one.

This breakthrough discovery has significant implications for research areas dealing with electron and proton motion, offering new insights into fundamental chemical processes. The findings could also contribute to advancing technologies concerned with converting and storing chemical energy, such as redox catalysis for solar fuel generation or hydrogen production.

Chemistry

A Single Step Forward: Revolutionizing Drug Discovery with Carbon Insertion

A research team has pioneered a groundbreaking method that could accelerate drug discovery and reduce pharmaceutical development costs. Their work introduces a safe, sustainable way to insert a single carbon atom into drug molecules at room temperature.

Avatar photo

Published

on

The discovery of new medicines is an intricate process that requires patience, precision, and creativity. A research team from the University of Oklahoma has made a groundbreaking breakthrough that could accelerate this process, making it faster, safer, and more cost-effective. Their innovative method allows for the insertion of a single carbon atom into drug molecules at room temperature, opening up new possibilities for chemical diversity without compromising sensitive structures.

Nitrogen atoms and nitrogen-containing rings, known as heterocycles, play a crucial role in medicine development. A team led by OU Presidential Professor Indrajeet Sharma has found a way to modify these rings by adding just one carbon atom using a fast-reacting chemical called sulfenylcarbene. This process, called skeletal editing, transforms existing molecules into new drug candidates.

The significance of this discovery lies in its potential to change the molecule’s biological and pharmacological properties without altering its functionalities. This could unlock uncharted regions of chemical space in drug discovery, making it easier to find effective treatments for various diseases.

Unlike previous studies that relied on potentially explosive reagents and posed significant safety concerns, Sharma’s team has developed a bench-stable reagent that generates sulfenylcarbenes under metal-free conditions at room temperature. This achievement reduces environmental and health risks associated with metal-based carbenes.

The researchers are also exploring how this chemistry could revolutionize DNA-encoded library (DEL) technology, which allows for the rapid screening of billions of small molecules for their potential to bind to disease-relevant proteins. The metal-free, room-temperature conditions of the team’s new carbon insertion strategy make it a compelling candidate for use in DEL platforms.

By enabling precise skeletal editing in collaboration with the Damian Young group at the Baylor College of Medicine, Sharma’s approach could significantly enhance the chemical diversity and biological relevance of DEL libraries. This is particularly important as these are two key bottlenecks in drug discovery.

The cost of many drugs depends on the number of steps involved in making them. Adding a carbon atom in the late stages of development can make new drugs cheaper, akin to renovating a building rather than building it from scratch. By making these drugs easier to produce at large scale, we could reduce the cost of healthcare for populations around the world.

In conclusion, Sharma’s team has pioneered a groundbreaking method that accelerates drug discovery and reduces pharmaceutical development costs. Their innovative approach has far-reaching implications for the field of medicine, making it faster, safer, and more cost-effective.

Continue Reading

Chemistry

“Nature’s Filter: Plant-Based Extracts Show Promise in Removing Microplastics from Water”

The substances behind the slimy strings from okra and the gel from fenugreek seeds could trap microplastics better than a commonly used synthetic polymer. Previously, researchers proposed using these sticky natural polymers to clean up water. Now, they report that okra and/or fenugreek extracts attracted and removed up to 90% of microplastics in ocean water, freshwater and groundwater.

Avatar photo

Published

on

The fight against microplastic pollution has taken a promising turn. Researchers have discovered that extracts from plants like okra and fenugreek can trap and remove up to 90% of these tiny plastic particles from various types of water – ocean, freshwater, and groundwater. This breakthrough, published in ACS Omega, offers a biodegradable and non-toxic alternative to synthetic polymers currently used for wastewater treatment.

Researchers led by Rajani Srinivasan have been exploring plant-based approaches to clean contaminated water. In lab experiments, they found that extracts from okra, fenugreek, and tamarind formed sticky natural polymers that clump together with microplastics, making it easy to separate them from the water. The team demonstrated successful removals in freshwater and ocean water at a meeting of the American Chemical Society.

To extract these sticky plant polymers, researchers soaked sliced okra pods and blended fenugreek seeds in water overnight. They then removed the dissolved extracts, dried them into powders, and analyzed their composition. Initial tests showed that the powdered extracts contained polysaccharides, natural polymers capable of attracting microplastics.

The researchers then tested these plant extracts on real-world samples from waterbodies around Texas. The results varied depending on the original water source: okra worked best in ocean water (80%), fenugreek in groundwater (80-90%), and a combination of both in freshwater (77%). The team hypothesizes that this difference is due to the varying types, sizes, and shapes of microplastics present in each water sample.

Currently, polyacrylamide is used for contaminant removal during wastewater treatment. However, the researchers propose using okra and fenugreek extracts as biodegradable and non-toxic alternatives.

“Utilizing these plant-based extracts in water treatment will remove microplastics and other pollutants without introducing additional toxic substances to the treated water,” says Srinivasan. “This can significantly reduce long-term health risks to the population.”

The researchers acknowledge funding from various institutions, including the U.S. Department of Energy, Tarleton State University, and the National Science Foundation Research Experiences for Undergraduates program.

Continue Reading

Air Pollution

Breaking Down Plastic Pollution: A Revolutionary New Tool for Detecting Nanoplastics and Microplastics

A team of researchers has developed a cost-effective, high-throughput technology for detecting nanoplastics and microplastics in the environment. These particles are pervasive, posing health and environmental risks, yet detecting them at the nanoscale has been difficult. The 3D-printed HoLDI-MS test platform overcomes the limitations of traditional mass spectrometry by enabling direct analysis of samples without requiring complex sample preparation. The researchers say it also will work for detection of waterborne plastic particles. HoLDI-MS stands for hollow-laser desorption/ionization mass spectrometry.

Avatar photo

Published

on

By

The world is facing an unprecedented crisis due to the proliferation of nanoplastics and microplastics in our environment. These tiny particles, often overlooked, pose significant health and environmental risks. However, detecting them at the nanoscale has been a daunting challenge. That’s why a team of researchers from McGill University has developed a groundbreaking technology that makes it possible to detect these plastic particles efficiently and accurately.

The HoLDI-MS (Hollow-Laser Desorption/Ionization Mass Spectrometry) test platform is a 3D-printed device that overcomes the limitations of traditional mass spectrometry. This innovative tool allows for direct analysis of samples without requiring complex sample preparation, making it a cost-effective and high-throughput solution.

“We’re excited to provide a method that is effective, quantitative, highly accurate, and affordable,” said Professor Parisa Ariya, who led the study published in Nature’s Communications Chemistry. “It requires little energy, is recyclable, and costs only a few dollars per sample.”

The HoLDI-MS platform has significant implications for international cooperation in combating plastic pollution. As part of their study, the researchers identified polyethylene and polydimethylsiloxanes in indoor air, as well as polycyclic aromatic hydrocarbons in outdoor air.

“This technology allows us to pinpoint the major sources of nano and microplastics in the environment,” said Professor Ariya. “More importantly, it enables data comparison and validation across laboratories worldwide, a crucial step toward harmonizing global research on plastic pollution.”

The development of HoLDI-MS is a testament to the power of interdisciplinary collaboration and innovation. Funded by organizations such as the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canadian Foundation for Innovation (CFI), and National Research Council Canada (NRC), this technology has the potential to revolutionize the way we detect and address plastic pollution.

As the world continues to grapple with the consequences of plastic waste, the HoLDI-MS platform offers a beacon of hope. By providing a cost-effective and efficient solution for detecting nanoplastics and microplastics, this technology can help us take a significant step toward mitigating the impact of plastic pollution on our environment.

Continue Reading

Trending