Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Chemistry

Binding Incompatible Polymers: A Breakthrough in Plastic Recycling

Researchers have developed an inexpensive and potentially scalable approach that uses a commercially available peroxide to bind polyethylene and polypropylene together, thereby creating a more useful, high-quality plastic recycling additive.

Avatar photo

Published

on

Imagine a world where the two-thirds of the world’s plastics that account for most of our waste can be easily recycled. Unfortunately, the polymers’ popularity has an equally large downside due to their similar densities and physical properties, making them difficult to separate when mechanically recycled together. This results in weak, degraded materials that aren’t useful.

But what if there was a way to bind these incompatible polymers together? That’s exactly what Cornell researchers have achieved using commercially available peroxide. The findings were published in the Journal of the American Chemical Society, and the project was led by Geoffrey Coates, the Tisch University Professor of Chemistry and Chemical Biology.

The key to this breakthrough was looking for existing polymers that could do the job with the right processing, rather than creating a new one from scratch. Postdoctoral researcher Moritz Kränzlein began experimenting with materials in the lab, always keeping affordability in mind. “Every second meeting, when I was giving Geoff an update, his first question was, ‘What’s the cost?’ There was always this line of price per pound that I shouldn’t cross,” Kränzlein said.

After more than 200 experiments over a year and a half, the researchers settled on an organic alkyl peroxide. When heated, it essentially plucks hydrogen molecules off high-density polyethylene (HDPE) and isotactic polypropylene (iPP), allowing them to be grafted together and form a copolymer material that can be added to mechanical recycling processes for HDPE and iPP mixtures, restoring their properties.

This “plastic soap” acts like a catalyst, enabling the polymers to mix better and resulting in improved physical properties. While it may have taken some trial and error to get there, the researchers are confident that this technology can be scaled up to make large amounts of the copolymer material.

The implications of this breakthrough are significant. Imagine making new polymer alloys that leverage the respective strengths of different waste plastics without needing million-dollar plants. This could revolutionize plastic recycling and provide a sustainable solution for our future.

As Coates said, “You could make a whole kind of pallet of alloys that might have better properties than either one of the pure polymers alone.” The dream is to create packaging that uses less material yet has the same sort of properties. That’s one of the other big applications for this technology.

Batteries

Unlocking Battery Secrets at the Atomic Scale

Scientists have cracked open a mysterious layer inside batteries, using cutting-edge 3D atomic force microscopy to capture the dynamic molecular structures at their solid-liquid interfaces. These once-invisible electrical double layers (EDLs) twist, break, and reform in response to surface irregularities phenomena never seen before in real-world battery systems. The findings don t just refine our understanding of how batteries work at the microscopic level they could fundamentally change how we build and design next-generation energy storage.

Avatar photo

Published

on

By

The mysteries hidden within your battery are finally being unraveled by scientists at the University of Illinois Urbana-Champaign. Led by Professor Yingjie Zhang, a team has completed an investigation into the nonuniformity of liquid electrolytes at solid-liquid interfaces in electrochemical cells – a long-overlooked aspect that holds significant technological implications.

The researchers used 3D atomic force microscopy to study the molecular structure of electrical double layers (EDLs), which self-organize into nanometer-thick layers at the interface between the liquid electrolyte and solid conductor. Their findings revealed three primary responses in EDLs: bending, breaking, and reconnecting – patterns that are quite universal and mainly driven by the finite size of liquid molecules.

The study provides a groundbreaking understanding of electrochemical cells and has significant implications for battery technology. By shedding light on the nonuniformity of liquid electrolytes at solid-liquid interfaces, researchers can now develop new chapters in electrochemistry textbooks and inform technological applications.

“We have resolved the EDLs in realistic, heterogeneous electrochemical systems, which is a holy grain in electrochemistry,” said Professor Zhang. “Besides the practical implications in technology, we are starting to develop new chapters in electrochemistry textbooks.”

The research team also includes graduate student Qian Ai as the lead author and other contributors from the University of Illinois Urbana-Champaign. Support was provided by the Air Force Office of Scientific Research.

This study marks a significant step forward in understanding the atomic-scale secrets within batteries, paving the way for improved battery technology and innovative applications.

Continue Reading

Black Holes

“Cosmic Colliders: How Ghost Particles May Decide the Fate of Collapsing Stars”

Neutrinos, ghostly particles barely interacting with matter, may secretly be reshaping the fates of massive stars. New research suggests that as stars collapse, they form natural “neutrino colliders,” allowing scientists to probe these elusive particles in ways never possible on Earth. If neutrinos do interact through yet-undiscovered forces, they could cause stars to collapse into black holes instead of neutron stars, reshaping how we understand cosmic evolution.

Avatar photo

Published

on

By

Cosmic particles known as neutrinos have long been shrouded in mystery, their properties and behavior still not fully understood by scientists. These ghostly entities, which come in three “flavors” – electron, muon, and tau – can be lethal to massive stars more than 10 times the size of our sun. Neutrinos are notorious for being slippery, making it nearly impossible to collide them with each other in a lab setting.

Recently, researchers from the Network for Neutrinos, Nuclear Astrophysics, and Symmetries (N3AS) have made a groundbreaking discovery through theoretical calculations. They found that massive stars can act as “neutrino colliders,” where neutrinos steal thermal energy from these stars, causing their electrons to move at nearly the speed of light. This drives the star to instability and collapse.

As the collapsing star’s density becomes incredibly high, its neutrinos become trapped, leading to a series of collisions among themselves. With purely standard model interactions, the neutrinos will predominantly be electron flavor, resulting in a relatively “cold” matter core that might leave behind a neutron star remnant.

However, if secret interactions are at play, changing the flavor of neutrinos radically, the outcome is drastically different. In this scenario, neutrinos of all flavors collide, producing a mostly neutron “hot” core that may eventually give rise to a black hole remnant.

Future experiments like the Deep Underground Neutrino Experiment (DUNE) at Fermi National Accelerator Lab might be able to test these ideas, and observations of neutrinos or gravitational waves from collapsing stars could provide further insights into this phenomenon. The research, led by UC San Diego researchers and published in Physical Review Letters, has been funded by institutions such as the National Science Foundation and the Department of Energy, underscoring the importance of continued study in this area.

Continue Reading

Chemistry

Breaking Down Barriers: Scientists Uncover the Secrets of Quantum Tunneling

For the first time ever, scientists have watched electrons perform a bizarre quantum feat: tunneling through atomic barriers by not just slipping through, but doubling back and slamming into the nucleus mid-tunnel. This surprising finding, led by POSTECH and Max Planck physicists, redefines our understanding of quantum tunneling—a process that powers everything from the sun to your smartphone.

Avatar photo

Published

on

By

In a groundbreaking study published in Physical Review Letters, Professor Dong Eon Kim from POSTECH’s Department of Physics and his research team have successfully unraveled the mystery of electron tunneling, a fundamental concept in quantum mechanics. This achievement marks a significant milestone in understanding one of the most enduring enigmas in physics – a phenomenon that has puzzled scientists for over 100 years.

Quantum tunneling is a process where electrons pass through energy barriers (or “walls”) that they seemingly cannot surmount with their energy, much like digging a tunnel through them. This phenomenon underlies the operation of semiconductors, which power smartphones and computers, as well as nuclear fusion – the process that generates light and energy in the sun.

Until now, while some understanding existed about what happens before and after an electron passes through a tunnel, the exact behavior of the electron as it traverses the barrier remained unclear. Enter Professor Kim’s team, who collaborated with researchers from the Max Planck Institute for Nuclear Physics in Heidelberg, Germany, to conduct an experiment using intense laser pulses to induce electron tunneling in atoms.

The results revealed a surprising phenomenon: electrons do not simply pass through the barrier but collide again with the atomic nucleus inside the tunnel. This process was dubbed “under-the-barrier recollision” (UBR) by the research team. Until now, it was believed that electrons could only interact with the nucleus after exiting the tunnel, making this a groundbreaking discovery.

Moreover, during UBR, electrons gain energy inside the barrier and collide again with the nucleus, strengthening what is known as “Freeman resonance.” This ionization process was significantly greater than previously observed and remained largely unaffected by changes in laser intensity – a completely new finding that defied existing theories.

This research marks a crucial step forward in understanding quantum tunneling dynamics. As such, it has significant implications for the development of advanced technologies like semiconductors, quantum computers, and ultrafast lasers, which rely on precise control over electron behavior and increased efficiency.

Professor Kim emphasizes, “Through this study, we’ve found clues about how electrons behave when they pass through the atomic wall.” He concludes, “Now, we can finally understand tunneling more deeply and control it as we wish.”

This research received support from the National Research Foundation of Korea and the Capacity Development Project of the Korea Institute for Advancement of Technology.

Continue Reading

Trending