Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Energy and Resources

Breaking a Century-Old Physics Barrier: Perfect Wave Trapping with Simple Cylinders

Researchers unlock the mystery of bound states in the continuum using compact mechanical systems.

Avatar photo

Published

on

Breaking a century-old physics barrier is no easy feat, but a joint research team from POSTECH (Pohang University of Science and Technology) and Jeonbuk National University has successfully achieved this milestone. The researchers have demonstrated the complete confinement of mechanical waves within a single resonator, a phenomenon long thought to be theoretically impossible.

The concept of bound states in the continuum (BIC), proposed by Nobel laureates John von Neumann and Eugene Wigner nearly a century ago, suggests that under certain conditions, waves can be trapped indefinitely without any energy leakage. This idea was met with skepticism for decades, as scientists believed it could not exist in a compact, single-particle system.

However, the research team has broken this long-standing theoretical boundary by successfully realizing BIC in a single particle. Using a highly tunable mechanical platform made of cylindrical granular particles, the researchers built a system where they could control how mechanical waves interact at contact boundaries.

By precisely adjusting the alignment of these cylinders, the team observed that a wave mode became fully confined within a single cylinder without any energy escaping into the surrounding structure. This polarization-protected BIC was not just theoretical – it was observed in real experiments. Moreover, the system achieved quality factors (Q-factors) over 1,000, a measure of how efficiently a resonator stores energy with minimal loss.

But what happens when many of these special cylinders are connected in a chain? The team discovered that the trapped wave modes could extend throughout the chain without dispersing – a phenomenon known as a flat band. This behavior is described as a Bound Band in the Continuum (BBIC) and opens new possibilities for energy harvesting, ultra-sensitive sensors, and even advanced communications.

“It’s like tossing a stone into a still pond and seeing the ripples remain motionless, vibrating only in place,” said lead author Dr. Yeongtae Jang. “Even though the system allows wave motion, the energy doesn’t spread – it stays perfectly confined.”

This research was supported by the Mid-Career Research Program of the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT, as well as the POSCO-POSTECH-RIST Convergence Research Center.

The implications of this research are significant, with potential applications in low-loss energy devices, next-generation sensing and signal technologies. While still in the fundamental research phase, this breakthrough has the potential to revolutionize various fields and industries.

Batteries

“Reviving ‘Dead’ Batteries: The Path to a Greener Future”

Lithium battery recycling offers a powerful solution to rising demand, with discarded batteries still holding most of their valuable materials. Compared to mining, recycling slashes emissions and resource use while unlocking major economic potential. Yet infrastructure, policy, and technology hurdles must still be overcome.

Avatar photo

Published

on

By

As the world moves towards a cleaner energy future, the importance of recycling ‘dead’ batteries cannot be overstated. With the growing demand for electric vehicles, portable electronics, and renewable energy storage, lithium has become a critical mineral. According to new research from Edith Cowan University (ECU), tapping into used batteries as a secondary source of lithium not only helps reduce environmental impact but also secures access to this valuable resource, supporting a circular economy and ensuring long-term sustainability in the energy sector.

The global lithium-ion battery market size is projected to expand at a compound annual growth rate of 13 per cent, reaching $87.5 billion by 2027. However, only around 20 per cent of a lithium-ion battery’s capacity is used before the battery is no longer fit for use in electric vehicles, meaning those batteries ending up in storage or on the landfill retain nearly 80 per cent of their lithium capacity.

The Australian Department of Industry, Science and Resources has estimated that by 2035, Australia could be generating 137,000 t of lithium battery waste annually. For the end-of-life batteries, the obvious answer is recycling, said first author Mr Asad Ali, quoting figures from the government which estimates that the recycling industry could be worth between $603 million and $3.1 billion annually in just over a decade.

“By recycling these batteries, you can access not only the remaining lithium – which already purified to near 99 per cent – but you can also retrieve the nickel and the cobalt from these batteries,” Mr Ali noted.

While the lithium retrieved through the recycling process is unlikely to impact the lithium extraction or downstream sectors, the recycling process offered significant environmental benefits when compared with the mining industry. Recycling processes can significantly reduce the extensive use of land, soil contamination, ecological footprint, water footprint, carbon footprint, and harmful chemical release into the environment.

Mining emits up to 37% tons of CO2 per ton of lithium. Recycling processes produce up to 61 per cent less carbon emissions compared with mining and uses 83 per cent less energy and 79 per cent less water as compared to mining.

ECU lecturer and corresponding author Dr Muhammad Azhar said that while Australia holds one of the largest hard rock lithium reserves in the world, the recovery of lithium from end-of-life batteries could provide socio-economic benefits and fulfils environmental sustainability.

The benefits of lithium-ion battery recycling seem obvious, but there are still some challenges to be addressed. The rate of innovation significantly outstrips policy development, and the chemical make-up of the batteries also continuously evolve, which makes the recycling of these batteries more complicated.

However, there is a definite need for investment into the right infrastructure in order to create this circular economy. Several Australian companies are looking at the best ways to approach this, and ECU is exploring the second life of retired lithium batteries, providing a promising future for a greener tomorrow.

Continue Reading

Biochemistry

Shape-Shifting Catalysts: Revolutionizing Green Chemistry with a Single Atom

A team in Milan has developed a first-of-its-kind single-atom catalyst that acts like a molecular switch, enabling cleaner, more adaptable chemical reactions. Stable, recyclable, and eco-friendly, it marks a major step toward programmable sustainable chemistry.

Avatar photo

Published

on

By

The scientific community has witnessed a groundbreaking development in sustainable chemistry with the creation of a shape-shifting single-atom catalyst at the Politecnico di Milano. This innovative material has demonstrated the capability to selectively adapt its chemical activity, paving the way for more efficient and programmable industrial processes.

Published in the Journal of the American Chemical Society, one of the world’s most esteemed scientific journals in chemistry, this study marks a significant breakthrough in the field of single-atom catalysts. For the first time, scientists have successfully designed a material that can change its catalytic function depending on the chemical environment, much like a ‘molecular switch.’ This allows complex reactions to be performed more cleanly and efficiently, using less energy than conventional processes.

The research focuses on a palladium-based catalyst in atomic form encapsulated in a specially designed organic structure. This unique setup enables the material to ‘switch’ between two essential reactions in organic chemistry – bioreaction and carbon-carbon coupling – simply by varying the reaction conditions. The team has successfully demonstrated this phenomenon, showcasing the potential for more intelligent, selective, and sustainable chemical transformations.

Lead researcher Gianvito Vilé, lecturer at the Politecnico di Milano’s ‘Giulio Natta’ Department of Chemistry, Materials and Chemical Engineering, emphasizes the significance of their discovery: “We have created a system that can modulate catalytic reactivity in a controlled manner, paving the way for more intelligent, selective, and sustainable chemical transformations.”

The new catalyst stands out not only for its reaction flexibility but also for its stability, recyclability, and reduced environmental impact. ‘Green’ analyses conducted by the team reveal a substantial decrease in waste and hazardous reagents, making it an exemplary model for sustainable chemistry.

This study is the result of an international collaboration with esteemed institutions from around the world, including the University of Milan-Bicocca, the University of Ostrava (Czech Republic), the University of Graz (Austria), and Kunsan National University (South Korea). The joint efforts of these researchers have led to a groundbreaking achievement that has far-reaching implications for the field of green chemistry.

Continue Reading

Chemistry

Scientists Stunned by Record-Breaking, Watermelon-Shaped Nucleus: Breakthrough Discovery in Nuclear Physics

Scientists in Finland have measured the heaviest known nucleus to undergo proton emission, discovering the rare isotope 188-astatine. It exhibits a unique shape and may reveal a new kind of nuclear interaction.

Avatar photo

Published

on

By

Scientists have made a groundbreaking discovery in nuclear physics, measuring the heaviest nucleus ever recorded to decay via proton emission. This achievement marks the first time such a feat has been accomplished in over 30 years, with the previous record set in 1996.

The research team from the University of Jyväskylä, Finland, successfully produced and measured the lightest known isotope of astatine, 188At, consisting of 85 protons and 103 neutrons. This exotic nucleus was created through a complex process involving a fusion-evaporation reaction and identified using a sophisticated detector setup.

“The properties of this nucleus reveal a trend change in the binding energy of the valence proton,” explains Doctoral Researcher Henna Kokkonen, who led the study. “This could be explained by an interaction unprecedented in heavy nuclei.”

The research team’s findings have significant implications for our understanding of atomic nuclei and their behavior. By expanding a theoretical model to interpret the measured data, scientists can now better comprehend the intricate mechanisms governing these complex systems.

Kokkonen notes that studying such exotic nuclei is extremely challenging due to their short lifetimes and low production cross sections. However, precise techniques like those employed in this study have made it possible to unlock new insights into the fundamental nature of matter.

The research article was published in Nature Communications as part of an international collaboration involving experts in theoretical nuclear physics. This breakthrough discovery not only pushes the boundaries of human knowledge but also has far-reaching implications for our understanding of the universe and its mysteries.

Continue Reading

Trending