Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Alternative Fuels

Challenges Ahead: Reevaluating Solid-State Lithium Metal Batteries

A recent study evaluating garnet-type solid electrolytes for lithium metal batteries finds that their expected energy density advantages may be overstated. The researchers posited that composite or quasi-solid-state electrolytes may be more viable alternatives.

Avatar photo

Published

on

Challenges Ahead: Reevaluating Solid-State Lithium Metal Batteries

A recent study has shed new light on the prospects of solid-state lithium metal batteries (SSLMBs), a technology touted as the next generation of energy storage. The research reveals that, despite their expected advantages, SSLMBs may not deliver the significant boost in energy density previously assumed.

The study focused on lithium lanthanum zirconium oxide (LLZO), a leading candidate for solid electrolytes. While LLZO is valued for its stability and ionic conductivity, detailed modeling of a practical LLZO-based pouch cell showed that even under ideal conditions, the gains are limited. The battery’s performance remains only slightly ahead of conventional lithium-ion cells, with a gravimetric energy density of approximately 272 Wh/kg.

One key issue highlighted in the study is LLZO’s density, which increases the overall cell mass and reduces expected energy benefits. Although the volumetric energy density reaches approximately 823 Wh/L, the added weight and cost of LLZO hinder its practicality. The material’s brittleness, difficulty in fabricating defect-free thin sheets, and issues with lithium dendrites and voids at the interface further complicate large-scale implementation.

Researchers are now exploring alternative approaches that integrate LLZO with other materials, such as hybrid composite electrolytes or quasi-solid-state LLZO electrolytes. These designs have demonstrated improved long-term stability and may offer a more viable solution for SSLMBs.

The study emphasizes the need for practical engineering solutions that balance energy performance, manufacturability, and cost. By reevaluating the potential of solid-state lithium metal batteries, researchers can better navigate the challenges ahead and work towards developing a more efficient and reliable technology.

Alternative Fuels

“Revolutionizing Energy Storage: Scientists Break World Record with Lithium-Ion Conductors”

A team partially replaced lithium in a lithium antimonide compound with the metal scandium. This creates specific gaps, so-called vacancies, in the crystal lattice of the conductor material. These gaps help the lithium ions to move more easily and faster, resulting in a new world record for ion conductivity.

Avatar photo

Published

on

By

The pursuit of efficient energy storage has led scientists to explore novel materials for solid-state batteries. Researchers at TUM and TUMint.Energy Research have taken a groundbreaking step forward by developing a new material that conducts lithium ions more than 30% faster than any previously known substance. This breakthrough, achieved through the creation of a lithium-antimonide compound with scandium, has far-reaching implications for the future of energy storage.

The team, led by Prof. Thomas F. Fässler from the Chair of Inorganic Chemistry with a Focus on Novel Materials, discovered that by partially replacing lithium in a lithium antimonide compound with the metal scandium, they could create specific gaps or vacancies in the crystal lattice of the conductor material. These gaps allowed the lithium ions to move more easily and faster, resulting in an unprecedented level of ion conductivity.

To validate this result, the team collaborated with the Chair of Technical Electrochemistry under Prof. Hubert Gasteiger at TUM. Co-author Tobias Kutsch, who conducted the validation tests, noted that the material also conducts electricity, presenting a special challenge for measurement methods.

Prof. Fässler sees great potential in the new material: “Our result currently represents a significant advance in basic research. By incorporating small amounts of scandium, we have uncovered a new principle that could prove to be a blueprint for other elemental combinations.” The team is optimistic about the practical applications of this discovery, particularly as additives in electrodes.

In addition to its faster conductivity, the material also offers thermal stability and can be produced using well-established chemical methods. The researchers believe that their combination of lithium-antimony could have broader implications for enhancing conductivity in a wide range of other materials.

The team has even discovered an entirely new class of substances through their work, as first author Jingwen Jiang emphasizes: “Our combination consists of lithium-antimony, but the same concept can easily be applied to lithium-phosphorus systems. While the previous record holder relied on lithium-sulphur and required five additional elements for optimization, we only need Scandium as an additional component.”

This breakthrough has the potential to revolutionize energy storage, making it more efficient and sustainable for a wide range of applications. The researchers’ enthusiasm is evident in their pursuit of further testing and validation, with the goal of integrating this new material into practical battery cells.

Continue Reading

Alternative Fuels

Breaking Ground in Green Hydrogen Production: Urine-Fueled Systems Offer Promising Solutions

Researchers have developed two unique energy-efficient and cost-effective systems that use urea found in urine and wastewater to generate hydrogen. The unique systems reveal new pathways to economically generate ‘green’ hydrogen, a sustainable and renewable energy source, and the potential to remediate nitrogenous waste in aquatic environments.

Avatar photo

Published

on

By

The production of green hydrogen, a clean and renewable energy source, has long been hampered by its high cost. However, researchers from the Australian Research Council Centre of Excellence for Carbon Science and Innovation (COE-CSI) and the University of Adelaide have made significant strides in developing two innovative systems that harness the power of urea found in urine and wastewater to generate hydrogen efficiently.

Unlike traditional water-splitting electrolysis, which is energy-intensive and costly, these new pathways use significantly less electricity. The researchers’ breakthroughs address several limitations associated with existing urea-based systems, such as low hydrogen yields and the generation of toxic nitrogenous by-products (nitrates and nitrites).

The COE-CSI team, led by Professor Yao Zheng and Professor Shizhang Qiao, has successfully developed two separate systems that overcome these issues. The first system utilizes a membrane-free electrolysis process with a novel copper-based catalyst, while the second employs a platinum-based catalyst on carbon supports to generate hydrogen from urine.

One of the most exciting aspects of this research is the use of human urine as an alternative source for urea production. This green and cost-effective approach has the potential to significantly reduce the cost of making hydrogen, while also remediating nitrogenous waste in aquatic environments.

As Professor Zheng notes, “We need to reduce the cost of making hydrogen, but in a carbon-neutral way.” The researchers’ innovative systems are designed to produce harmless nitrogen gas instead of toxic by-products, and they use between 20-27% less electricity than traditional water-splitting systems.

The University of Adelaide team is committed to building on this fundamental research by developing carbon-supported, non-precious metal catalysts for constructing membrane-free urine-wastewater systems. This will achieve lower-cost recovery of green hydrogen while remediating the wastewater environment.

This breakthrough has far-reaching implications for the global energy crisis and the pursuit of sustainable energy solutions. As we continue to push the boundaries of innovation, it is essential that we develop technologies that not only address our energy needs but also minimize their environmental impact. The COE-CSI team’s work on green hydrogen production from urine and wastewater is a shining example of this vision, and its potential to transform the industry cannot be overstated.

Continue Reading

Alternative Fuels

“Breaking Down Barriers: Groundbreaking Recycling Technique Turns ‘Forever Chemicals’ into Renewable Resources”

A new technique that uses soundwaves to separate materials for recycling could help prevent potentially harmful chemicals leaching into the environment.

Avatar photo

Published

on

By

The article’s content rewritten for clarity and style:

Breaking Down Barriers: Groundbreaking Recycling Technique Turns ‘Forever Chemicals’ into Renewable Resources

In a major breakthrough, researchers at the University of Leicester have developed a revolutionary technique to efficiently separate valuable catalyst materials and fluorinated polymer membranes (PFAS) from catalyst-coated membranes (CCMs). This achievement has significant implications for preventing potentially harmful chemicals from contaminating our environment.

PFAS, often referred to as “forever chemicals,” are known to contaminate drinking water and have serious health implications. The Royal Society of Chemistry has urged government intervention to reduce PFAS levels in UK water supplies.

Fuel cells and water electrolysers, essential components of hydrogen-powered energy systems, rely on CCMs containing precious platinum group metals. However, the strong adhesion between catalyst layers and PFAS membranes has made recycling difficult.

The researchers’ innovative method uses organic solvent soaking and water ultrasonication to effectively separate these materials, revolutionizing the recycling process. Dr. Jake Yang from the University of Leicester School of Chemistry comments, “This method is simple and scalable. We can now separate PFAS membranes from precious metals without harsh chemicals – revolutionizing how we recycle fuel cells.”

Building on this success, a follow-up study introduced a continuous delamination process using high-frequency ultrasound to split the membranes, accelerating recycling. The innovative process creates bubbles that collapse when subjected to high pressure, allowing the precious catalysts to be separated in seconds at room temperature.

This groundbreaking research was carried out in collaboration with Johnson Matthey, a global leader in sustainable technologies. Industry-academia partnerships like this underscore the importance of collective efforts in driving technological progress.

Ross Gordon, Principal Research Scientist at Johnson Matthey, says, “The development of high-intensity ultrasound to separate catalyst-loaded membranes is a game-changer in how we approach fuel cell recycling. At Johnson Matthey, we are proud to collaborate on pioneering solutions that accelerate the adoption of hydrogen-powered energy while making it more sustainable and economically viable.”

As fuel cell demand continues to grow, this breakthrough contributes to the circular economy by enabling efficient recycling of essential clean energy components. The researchers’ efforts support a greener and more affordable future for fuel cell technology while addressing pressing environmental challenges.

Continue Reading

Trending