Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Brain Tumor

Early-Onset Cancers on the Rise: A Growing Concern for Public Health

Researchers have completed a comprehensive analysis of cancer statistics for different age groups in the United States and found that from 2010 through 2019, the incidence of 14 cancer types increased among people under age 50.

Avatar photo

Published

on

The National Institutes of Health (NIH) has conducted a comprehensive analysis of cancer statistics for different age groups in the United States. The study reveals that between 2010 and 2019, the incidence rates of 14 cancer types increased among people under the age of 50. These cancer types include breast cancer, colorectal cancer, kidney cancer, uterine cancer, and others.

Lead investigator Meredith Shiels, Ph.D., notes that this study provides a starting point for understanding which cancers are increasing among individuals under 50. The causes of these increases are likely to be specific to each type of cancer, including changes in cancer risk factors, screening or detection methods, and clinical diagnosis or coding.

The researchers analyzed incidence and mortality trends for 33 cancer types using data from the Centers for Disease Control and Prevention’s United States Cancer Statistics database and national death certificate data. They examined six age groups: three early-onset (15-29 years, 20-39 years, and 40-49 years) and three older-onset (50-59 years, 60-69 years, and 70-79 years).

The study found that the incidence of nine cancer types increased in at least one of the younger age groups, including female breast, colorectal, kidney, testicular, uterine, pancreatic, and three types of lymphoma. Although death rates did not increase in early-onset age groups for most of these cancers, researchers observed concerning increases in rates of colorectal and uterine cancer deaths at younger ages.

Only five cancer types increased in incidence among one of the younger age groups but not among any of the older age groups: melanoma, cervical cancer, stomach cancer, myeloma, and cancers of the bones and joints.

To better understand the magnitude of these increases, researchers estimated how many additional people were diagnosed with early-onset cancers in 2019 compared to expected diagnoses based on rates in 2010. The largest absolute increases were seen for female breast cancer (4,800 additional cases), followed by colorectal (2,100), kidney (1,800), uterine (1,200), and pancreatic cancers (500).

The researchers speculate that risk factors such as increasing obesity may have contributed to some of the increases in early-onset cancer incidence. Changes in cancer screening guidelines, advances in imaging technologies, and increased surveillance of high-risk individuals may also have led to earlier cancer diagnoses, potentially contributing to rising rates among younger age groups.

To more fully understand and address these increasing rates, future studies should examine trends in early-onset cancers across demographics and geography in the U.S. and internationally. Additional research is also needed to better understand the risk factors that are particularly relevant to younger people.

Brain Tumor

AI Tool Tracks Lung Tumors as You Breathe, Potentially Saving Lives

An AI system called iSeg is reshaping radiation oncology by automatically outlining lung tumors in 3D as they shift with each breath. Trained on scans from nine hospitals, the tool matched expert clinicians, flagged cancer zones some missed, and could speed up treatment planning while reducing deadly oversights.

Avatar photo

Published

on

The article describes how a team of Northwestern Medicine scientists has developed an innovative AI tool called iSeg that can accurately outline lung tumors on CT scans, even as they move with each breath. This is a critical factor in planning radiation treatment, which half of all cancer patients in the US receive during their illness. The study found that iSeg consistently matches expert outlines across hospitals and scan types, and also flags additional areas that some doctors may miss – areas linked to worse outcomes if left untreated.

The AI tool was trained using CT scans and doctor-drawn tumor outlines from hundreds of lung cancer patients treated at nine clinics within the Northwestern Medicine and Cleveland Clinic health systems. The study’s authors believe that iSeg can help reduce delays, ensure fairness across hospitals, and potentially identify areas that doctors might miss – ultimately improving patient care and clinical outcomes.

The research team is now testing iSeg in clinical settings, comparing its performance to physicians in real time. They are also integrating features like user feedback and working to expand the technology to other tumor types, such as liver, brain, and prostate cancers. The team envisions this as a foundational tool that could standardize and enhance how tumors are targeted in radiation oncology.

The study was published today (June 30) in the journal npj Precision Oncology.

Continue Reading

Brain Injury

The Hidden Glitch Behind Hunger: Scientists Uncover the Brain Cells Responsible for Meal Memories

A team of scientists has identified specialized neurons in the brain that store “meal memories” detailed recollections of when and what we eat. These engrams, found in the ventral hippocampus, help regulate eating behavior by communicating with hunger-related areas of the brain. When these memory traces are impaired due to distraction, brain injury, or memory disorders individuals are more likely to overeat because they can’t recall recent meals. The research not only uncovers a critical neural mechanism but also suggests new strategies for treating obesity by enhancing memory around food consumption.

Avatar photo

Published

on

The Hidden Glitch Behind Hunger: Scientists Uncover the Brain Cells Responsible for Meal Memories

Imagine forgetting about lunch and suddenly feeling extremely hungry. It’s a common phenomenon that can lead to overeating and disordered eating behaviors. Researchers have now identified a specific group of brain cells called “meal memory” neurons in laboratory rats that could explain why people with memory problems often overeat.

These specialized cells, found in the ventral hippocampus region of the brain, become active during eating and form what scientists call “meal engrams” – sophisticated biological databases that store information about food consumption experiences. An engram is essentially the physical trace a memory leaves behind in the brain, making it possible for us to recall specific details about our meals.

The discovery has significant implications for understanding human eating disorders. Patients with memory impairments, such as those with dementia or brain injuries that affect memory formation, may often consume multiple meals in quick succession because they cannot remember eating. Furthermore, distracted eating – such as mindlessly snacking while watching television or scrolling on a phone – may impair meal memories and contribute to overconsumption.

Researchers used advanced neuroscience techniques to observe the brain activity of laboratory rats as they ate, providing the first real-time view of how meal memories form. They found that meal memory neurons are distinct from other types of brain cells involved in memory formation. When these neurons were selectively destroyed, lab rats showed impaired memory for food locations but retained normal spatial memory for non-food-related tasks.

The study revealed that meal memory neurons communicate with the lateral hypothalamus, a brain region long known to control hunger and eating behavior. When this hippocampus-hypothalamus connection was blocked, the lab rats overate and could not remember where meals were consumed.

The findings have immediate relevance for understanding human eating disorders and could eventually inform new clinical approaches for treating obesity and weight management. Current weight management strategies often focus on restricting food intake or increasing exercise, but the new research suggests that enhancing meal memory formation could be equally important.

“We’re finally beginning to understand that remembering what and when you ate is just as crucial for healthy eating as the food choices themselves,” said Scott Kanoski, professor of biological sciences at the USC Dornsife College of Letters, Arts and Sciences and corresponding author of the study.

In addition to understanding human eating disorders, this research could also inform new strategies for treating obesity and weight management. Current approaches often focus on restricting food intake or increasing exercise, but the new findings suggest that enhancing meal memory formation could be equally important.

By uncovering the brain cells responsible for meal memories, scientists have taken a significant step towards understanding the complex relationships between our brains, bodies, and eating habits. The discovery of these specialized neurons offers new hope for developing effective treatments and interventions to help individuals manage their weight and improve their overall health.

Continue Reading

Brain Tumor

Uncovering Nature’s Secret: Ginger Compound Shows Promise in Targeting Cancer Cells’ Metabolism

Scientists in Japan have discovered that a natural compound found in a type of ginger called kencur can throw cancer cells into disarray by disrupting how they generate energy. While healthy cells use oxygen to make energy efficiently, cancer cells often rely on a backup method. This ginger-derived molecule doesn t attack that method directly it shuts down the cells’ fat-making machinery instead, which surprisingly causes the cells to ramp up their backup system even more. The finding opens new doors in the fight against cancer, showing how natural substances might help target cancer s hidden energy tricks.

Avatar photo

Published

on

The quest for a cure to cancer has led scientists to explore the depths of nature, seeking answers that can unlock the secrets of this complex disease. One such natural compound is found in kencur ginger, which has shown promise in targeting the metabolic pathway of cancer cells.

In normal human cells, energy is produced through the oxidation of glucose, resulting in the production of ATP (adenosine triphosphate), the primary energy source necessary for life. However, cancer cells take a different approach, using glycolysis to produce ATP even when oxygen is present. This inefficient method, known as the Warburg effect, has puzzled scientists, leading them to wonder why cancer cells choose this pathway.

Associate Professor Akiko Kojima-Yuasa and her team at Osaka Metropolitan University’s Graduate School of Human Life and Ecology have been investigating the cinnamic acid ester ethyl p-methoxycinnamate, a main component of kencur ginger. Their previous research revealed that this compound has inhibitory effects on cancer cells. The team decided to further their study by administering the acid ester to Ehrlich ascites tumor cells, which resulted in some unexpected findings.

The researchers discovered that ethyl p-methoxycinnamate not only disrupts de novo fatty acid synthesis and lipid metabolism but also triggers increased glycolysis as a possible survival mechanism in the cells. This adaptability was theorized to be attributed to the compound’s inability to induce cell death.

“These findings not only provide new insights that supplement and expand the theory of the Warburg effect, which can be considered the starting point of cancer metabolism research, but are also expected to lead to the discovery of new therapeutic targets and the development of new treatment methods,” stated Professor Kojima-Yuasa.

The study’s results have significant implications for cancer research, opening up new avenues for investigation into the metabolic pathways of cancer cells. As scientists continue to explore the mysteries of nature, they may uncover even more secrets that can lead to a deeper understanding and potential cures for this complex disease.

Continue Reading

Trending