Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Animals

Mosquito Receptors Go Cold: How Extreme Heat Affects Insect Repellents

Hotter temperatures may render natural insect repellents less effective against mosquitoes, according to a new study.

Avatar photo

Published

on

The way we keep mosquitoes at bay might be changing due to rising temperatures. Researchers have discovered that when it gets extremely hot, the natural insect repellents we rely on become less effective. This is because the pain receptors that help detect and avoid these chemicals are becoming desensitized.

In a recent study published in Pesticide Biochemistry and Physiology, Peter Piermarini and his team from Ohio State University investigated how mosquitoes respond to heat and insect repellents. They found that when temperatures reach above 32 degrees Celsius, the chemical cues that typically trigger mosquito avoidance behaviors become less potent.

The researchers focused on a pain receptor called TRPA1, which is responsible for detecting noxious heat and harmful chemicals in animals. In humans, this receptor can cause eye and skin irritation. Piermarini explained that “what we found was that the chemicals were not able to activate the mosquito wasabi receptor as effectively when temperatures exceeded the heat activation threshold.” This means that the mosquito would find certain repellents less irritating in hotter weather.

Typical insect repellents create a chemical barrier that discourages proximity and prevents mosquitoes from reaching their target. Yet, because their receptors are desensitized in warmer temperatures, natural substances like citronellal and catnip oil, known for their repellent properties, would be less effective. This could have serious implications as climate change leads to more extended breeding periods per season, worsen the spread of mosquito-borne disease.

The study was conducted by removing TRPA1 mosquito receptors and injecting them into frog egg cells, a technique often used for making receptor proteins in the lab. Then, they tested how the receptors would react to citronellal and catnip oil under normal and high temperatures. The results showed that the receptors were activated but less sensitive to the substances at higher temperatures.

In a second experiment, the researchers studied how fully grown female mosquitoes reacted when confronted with either repellent at different temperatures. When temperatures exceeded 32 degrees Celsius, the mosquitoes were less likely to avoid the substances, suggesting they might behave similarly in the wild.

Interestingly, the researchers found that synthetic mosquito repellents like DEET do not interact with the wasabi receptor and therefore remained effective even in high temperatures. “This suggests that during the hottest days of the year you’d probably want to stick with a more conventional synthetic repellent and avoid using a natural product with citronella or catnip oil,” said Piermarini.

The study highlights the importance of understanding how mosquito behavior changes under different environmental conditions, which can help inform strategies for controlling mosquito populations and preventing disease.

Agriculture and Food

“Stronger Social Ties, Stronger Babies: How Female Friendships Help Chimpanzee Infants Survive”

Female chimpanzees that forge strong, grooming-rich friendships with other females dramatically boost their infants’ odds of making it past the perilous first year—no kin required. Three decades of Gombe observations show that well-integrated mothers enjoy a survival rate of up to 95% for their young, regardless of male allies or sisters. The payoff may come from shared defense, reduced stress, or better access to food, hinting that such alliances laid early groundwork for humanity’s extraordinary cooperative spirit.

Avatar photo

Published

on

In a groundbreaking study published online on June 18 in iScience, researchers have found that female chimpanzees who were more socially integrated with other females before giving birth had a significantly higher chance of raising surviving offspring. This discovery sheds light on the crucial role of social connections among female chimps, particularly in the absence of close kin.

The study, led by Joseph Feldblum, assistant research professor of evolutionary anthropology at Duke University, analyzed three decades’ worth of behavioral data from 37 mothers and their 110 offspring. The researchers focused on association and grooming behavior – how often females spent time near each other or engaged in social grooming – in the year before birth.

The results showed that females who were more socially connected had a considerable better chance of raising their babies through to their first year, the period of highest infant mortality. In fact, a female with a sociality score twice the community average had a 95% chance her infant would survive the first year, while one who was halfway below average saw that chance drop to 75%. The effect persisted through age five, which is roughly the age of weaning.

Interestingly, the researchers found that having close female kin in the group – like a sister or mother – did not account for the survival benefit. Neither did having bonds with males, who could potentially offer protection. What mattered most was having social connections with other females, regardless of kinship.

“This tells us it’s not just about being born into a supportive family,” said Feldblum. “These are primarily social relationships with non-kin.”

The researchers propose several possibilities for the survival benefit, including:

* Social females receiving less harassment from other females
* More help defending food patches or protecting their young
* Offspring being less likely to be killed by another group member
* Social connections helping these females stay in better condition – maybe better fed and less stressed – through pregnancy, giving their offspring a better chance from the get-go.

Moreover, social females stayed social after their babies were born – a sign of stable relationships, not short-term alliances. “Our results don’t prove causation, but they point to the value of being surrounded by others who support you, or at least tolerate you,” said Feldblum.

This study has significant implications for understanding human evolution and cooperation. As Feldblum noted, “Human females who don’t have access to kin – for example because they moved to a new city or village – are still able to form strong bonds that can benefit them.” Studying these social dynamics in chimpanzees can help us understand how we evolved to be the social, cooperative species we are today.

Continue Reading

Animal Learning and Intelligence

The Generous Giants: Unpacking the Mystery of Killer Whales Sharing Fish with Humans

Wild orcas across four continents have repeatedly floated fish and other prey to astonished swimmers and boaters, hinting that the ocean’s top predator likes to make friends. Researchers cataloged 34 such gifts over 20 years, noting the whales often lingered expectantly—and sometimes tried again—after humans declined their offerings, suggesting a curious, relationship-building motive.

Avatar photo

Published

on

The study, conducted by researchers from Canada, New Zealand, and Mexico, has shed light on an intriguing phenomenon: killer whales in the wild have been observed sharing fish with humans over two decades. The research team analyzed 34 interactions, where orcas approached people in various settings, including boats, shorelines, and even while they were swimming in the water.

Lead author Jared Towers explained that orcas often share food with each other as a prosocial activity to build relationships within their social groups. Now, it seems they may also extend this behavior to humans, indicating an interest in relating to us as well.

The research was published in the Journal of Comparative Psychology and involved collecting information from various sources, including videos, photos, and interviews with people who had experienced these interactions. The incidents were carefully selected based on strict criteria: the orcas had to approach the people on their own and drop the item in front of them.

Some remarkable patterns emerged from this research. In most cases (21 out of 34), the encounters took place while people were on boats. On only one occasion did an orca attempt to offer food to someone standing on the shore. Notably, in many instances (11 times), the orcas waited to see what would happen after they made their offering, and some even tried again when their gift was initially refused.

This behavior bears resemblance to that of domesticated animals like dogs and cats, which sometimes share food with humans. However, this research marks one of the first detailed descriptions of similar behavior in non-domesticated animals.

The researchers suggest several possible explanations for this phenomenon: orcas may be practicing learned cultural behavior, exploring, playing, learning about, manipulating, or developing relationships with humans. Given their advanced cognitive abilities and social nature, these outcomes are considered plausible.

This groundbreaking study opens new avenues of inquiry into the fascinating world of killer whales.

Continue Reading

Agriculture and Food

The Sleeping Side Preference of Cats: A Survival Strategy?

Cats overwhelmingly choose to sleep on their left side, a habit researchers say could be tied to survival. This sleep position activates the brain’s right hemisphere upon waking, perfect for detecting danger and reacting swiftly. Left-side snoozing may be more than a preference; it might be evolution’s secret trick.

Avatar photo

Published

on

The world of cats is fascinating, especially when it comes to their sleeping habits. Researchers from Italy, Germany, Canada, Switzerland, and Turkey have made an intriguing discovery – cats prefer to sleep on their left side. This bias towards one side might seem trivial at first, but the team behind this study believes it holds a significant evolutionary advantage.

Cats are notorious for spending around 12 to 16 hours a day snoozing. They often find elevated places to rest, making it difficult for predators to access them from below. The research team, led by Dr. Sevim Isparta and Professor Onur Güntürkün, aimed to understand the behavior behind this preference. They analyzed over 400 YouTube videos featuring cats sleeping on one side or the other.

The results showed that two-thirds of these videos had cats sleeping on their left side. So, what’s the explanation? According to the researchers, when a cat sleeps on its left side and wakes up, it perceives its surroundings with its left visual field. This visual information is processed in the right hemisphere of the brain, which specializes in spatial awareness and threat processing.

This might seem like an insignificant detail, but for cats, it’s a crucial aspect of survival. By sleeping on their left side, they can quickly respond to potential threats or prey upon waking up. The researchers conclude that this preference could be a key survival strategy for cats.

The study published in the journal Current Biology provides valuable insights into the fascinating world of cat behavior and evolution. As we continue to learn more about our feline friends, we might just uncover even more surprising advantages behind their seemingly ordinary habits.

Continue Reading

Trending