Connect with us

Brain Tumor

Pancreatic Cells’ Epigenetic “Memory” Reveals Key Role in Cancer Transition

Scientists say they have found a pattern of so-called epigenetic ‘marks’ in a transition state between normal and pancreatic cancer cells in mice, and that the normal cells may keep at least a temporary ‘memory’ of those cancer-linked marks.

Avatar photo

Published

on

Pancreatic cells have been found to “remember” epigenetic marks associated with a precancerous state, even in the absence of genetic sequence mutations. This discovery, made by scientists at Johns Hopkins Medicine, sheds light on the transition process from normal to pancreatic cancer cells.

The researchers, led by Andrew Feinberg, M.D., discovered that as acinar cells transform into ductal cells due to inflammation or damage, they acquire epigenetic marks on genes linked with pancreatic cancer. These epigenetic changes help regulate genetic expression without altering the DNA sequence itself. The transition process is a natural response of the pancreas to protect itself from corrosive inflammation and other stressors.

The study, published in Genome Medicine, analyzed the whole genome of mouse pancreatic cells transitioning between acinar and ductal cells. The scientists found epigenetic marks on genes linked with pancreatic cancer, including those related to PI3K and R/R/C GTPase. These findings are consistent with earlier research that identified similar epigenetic changes in human pancreatic precancers.

What’s more, the researchers discovered that when transitioning cells returned to their original identity as acinar cells, some of the epigenetic marks on pancreatic cancer-linked genes remained for at least seven days, forming a “memory” of the epigenetic signature. This suggests that normal cells may keep at least a temporary record of cancer-linked epigenetic marks.

The study’s findings have significant implications for understanding how normal cells morph into cancer and the roles of inflammation and cellular damage in this process. The results also suggest that further studies may reveal that epigenetic changes happening in a cell’s transition state could explain the increasing frequency of cancer in young people, as they may not have acquired age-associated mutations to the genetic code itself.

The research team includes Adrian Idrizi, Rakel Tryggvadottir, Weiqiang Zhou, Wenpin Hou, and Hongkai Ji from Johns Hopkins Medicine. Funding for the study was provided by the National Institutes of Health (CA054358, 5F31CA250489, K99HG011468).

Brain Tumor

“Revolutionizing Lymphoma Treatment: Enhanced CAR T Cell Therapy Shows Promise in Small Study”

A phase I study of a next-generation CAR T cell therapy showed a 52 percent complete remission rate for patients with relapsed/refractory lymphoma.

Avatar photo

Published

on

The article describes a groundbreaking study that has shown promising results in treating lymphoma patients who have resisted multiple rounds of other cancer treatments, including commercially available CAR T cell therapies. The new enhanced CAR T cell therapy, dubbed huCART19-IL18, was found to be highly effective in 81% of patients and resulted in complete remission in 52%. This is a significant improvement over traditional CAR T cell therapies, which have been shown to result in long-term remission in only around 50% of patients.

The study, led by researchers at the University of Pennsylvania, used a new process that shortens the manufacturing time for the CAR T cells to just three days. This means that patients with aggressive, fast-growing cancers can begin CAR T cell therapy quicker than is currently possible with standard manufacturing times of nine to 14 days.

The addition of interleukin 18 (IL18) to the CAR T cells enhanced their ability to attack cancer cells and protected them from immune suppression and T cell exhaustion. The researchers also found that the type of CAR T cell therapy patients previously received may impact the efficacy of huCART19-IL18.

This study represents a significant development in the ongoing evolution of CAR T cell therapy, as it is the first time a cytokine-enhanced CAR T has been tested in patients with blood cancer. The researchers believe that incorporating cytokine secretion into CAR T cell design will have broad implications for enhancing cellular therapies, even beyond blood cancers.

The study has already led to several other clinical trials being planned, including studies for acute lymphocytic leukemia (ALL) and chronic lymphocytic leukemia (CLL). Another trial for non-Hodgkin’s lymphoma using a similar IL18-armored CAR T cell product is currently enrolling patients. On the manufacturing side, the team is partnering with a Penn spinout company to improve the process for how these CAR T cells are created and expanded in the laboratory before being reinfused into the patient.

Overall, this study has shown promise in treating lymphoma patients who have resisted multiple rounds of other cancer treatments, and further research is needed to fully understand its potential.

Continue Reading

Biochemistry

A Breakthrough in Brain Research: The Iontronic Pipette Revolutionizes Neurological Studies

Researchers have developed a new type of pipette that can deliver ions to individual neurons without affecting the sensitive extracellular milieu. Controlling the concentration of different ions can provide important insights into how individual brain cells are affected, and how cells work together. The pipette could also be used for treatments.

Avatar photo

Published

on

The development of an iontronic pipette at Linköping University has opened up new avenues for neurological research. This innovative tool allows researchers to deliver ions directly to individual neurons without affecting the surrounding extracellular milieu. By controlling the concentration of various ions, scientists can gain valuable insights into how brain cells respond to different stimuli and interact with each other.

The human brain consists of approximately 85-100 billion neurons, supported by a similar number of glial cells that provide essential functions such as nutrition, oxygenation, and healing. The extracellular milieu, a fluid-filled space between the cells, plays a crucial role in maintaining cell function. Changes in ion concentration within this environment can activate or inhibit neuronal activity, making it essential to study how local changes affect individual brain cells.

Previous attempts to manipulate the extracellular environment involved pumping liquid into the area, disrupting the delicate biochemical balance and making it difficult to determine whether the substances themselves or the changed pressure were responsible for the observed effects. To overcome this challenge, researchers at the Laboratory of Organic Electronics developed an iontronic micropipette measuring only 2 micrometers in diameter.

This tiny pipette can deliver ions such as potassium and sodium directly into the extracellular milieu, allowing scientists to study how individual neurons respond to these changes. Glial cell activity is also monitored, providing a more comprehensive understanding of brain function.

Theresia Arbring Sjöström, an assistant professor at LOE, highlighted that glial cells are critical components of the brain’s chemical environment and can be precisely activated using this technology. In experiments conducted on mouse hippocampus tissue slices, it was observed that neurons responded dynamically to changes in ion concentration only after glial cell activity had saturated.

This research has significant implications for neurological disease treatment. The iontronic pipette could potentially be used to develop extremely precise treatments for conditions such as epilepsy, where brain function can be disrupted by localized imbalances in ion concentrations.

Researchers are now continuing their studies on chemical signaling in healthy and diseased brain tissue using the iontronic pipette. They also aim to adapt this technology to deliver medical drugs directly to affected areas of the brain, paving the way for more targeted treatments for neurological disorders.

Continue Reading

Brain Tumor

Hair-like Electrodes Revolutionize Brain Activity Monitoring

Researchers have created a hairlike device for long-term, non-invasive monitoring of the brain’s electrical activity. The lightweight and flexible electrode attaches directly to the scalp and delivers stable, high-quality electroencephalography (EEG) recordings.

Avatar photo

Published

on

The article you provided has been rewritten for clarity, structure, and style, making it accessible to a general audience. Here’s the rewritten content:

In the realm of electroencephalography (EEG) monitoring, researchers at Penn State have made a groundbreaking discovery – one that could revolutionize the way we monitor brain activity. Gone are the days of cumbersome metal electrodes; instead, a team of scientists has created hair-like devices for non-invasive, long-term monitoring.

The innovative electrode is designed to mimic human hair and can be worn without drawing attention. This lightweight and flexible device captures stable, high-quality recordings of the brain’s signals for over 24 hours of continuous wear. The traditional metal electrodes used in EEG monitoring are rigid and can shift when someone moves their head, compromising data uniformity.

The new electrode uses a 3D-printed bioadhesive ink that allows it to stick directly onto the scalp without any gloopy gels or skin preparation. This minimizes the gap between the electrode and skin, improving signal quality. The device is also stretchable, ensuring it stays put even when combing hair or wearing a baseball cap.

The researchers found that the new device performed comparably to gold electrodes, the current standard for EEG monitoring. However, the hair-like electrode maintained better contact between the electrode and skin and performed reliably for extended periods without any degradation in signal quality.

According to Tao Zhou, Wormley Family Early Career Professor of Engineering Science and Mechanics, this technology holds promise for use in consumer health and wellness products, as well as clinical healthcare applications.

The conventional EEG monitoring process can be a cumbersome affair, requiring the application of gels to maintain good surface-to-surface contact between the electrodes and skin. This process is imprecise and can result in different amounts of gel used on the electrodes, affecting brain signal quality.

Zhou explained that this new device will change the impedance – or interface – between the electrodes and scalp, ensuring more consistent and reliable monitoring of EEG signals. The researchers also hope to make the system wireless in the future, allowing people to move around freely during recording sessions.

The team’s findings were published in a study in npc biomedical innovations, with funding from various institutions, including the National Institutes of Health and Oak Ridge Associated Universities.

In conclusion, the development of hair-like electrodes for brain activity monitoring is a significant breakthrough that could revolutionize the field. With its potential for non-invasive, long-term monitoring, this technology has far-reaching implications for healthcare and consumer products alike.

Continue Reading

Trending