Connect with us

Agriculture and Food

Targeted Fiber Diets: A New Approach to Boosting Health

Food scientists have reclassified dietary fibers — beyond just soluble and insoluble — to better guide nutritional decisions and drive targeted health food products.

Avatar photo

Published

on

The Australian food science community has made a significant breakthrough by reclassifying dietary fibers to better guide nutritional decisions and drive targeted health food products. This new approach recognizes that different types of fibers have distinct effects on the body, rather than simply being categorized as soluble or insoluble.

Dietary fibers in fruits, vegetables, beans, and whole grains are essential for human health, playing a crucial role in digestion, weight management, blood sugar control, heart health, and cancer prevention. However, consumer advice on how to use these fibers effectively for specific benefits has been lacking.

Professor Raj Eri from RMIT University emphasizes that just like different medicines target different conditions, various types of fibers have unique properties and effects on the body. For example, apples and bananas are both rich in dietary fiber but contain different types of fibers that work differently.

A new study published in Food Research International proposes a more nuanced classification system for dietary fibers based on five key features: backbone structure, water-holding capacity, structural charge, fiber matrix, and fermentation rate. This approach is designed to provide a more accurate understanding of each fiber’s health impacts.

Study lead author Christo Opperman explains that by starting with the key active features of fiber, this “bottom-up” approach allows for a more tailored understanding of how fibers interact with the body. For instance, if you want to promote colonic health, you can identify a fiber’s properties and determine its effectiveness in achieving that outcome.

The RMIT team has studied 20 different types of fibers and their interactions with the microbiome in the gut. This research has led to a greater understanding of how specific fibers can be used to achieve desired health outcomes, rather than simply relying on general guidelines.

The importance of fiber in the diet cannot be overstated, as it is one of the most critical nutrients for overall well-being. However, many populations, including those in Europe and the USA, are deficient in fiber intake. The recommended daily intake is 28-42 grams per day, but Americans average only 12-14 grams per day, while Europeans get around 18-24 grams per day.

The current classification system for dietary fibers has been criticized as simplistic, grouping fibers into soluble and insoluble categories without fully capturing the diverse structures and mechanisms through which they influence human physiology. The new framework proposed by the RMIT team aims to address this gap and provide a more accurate understanding of how different types of fibers can be used to achieve specific health benefits.

The researchers are now planning to investigate how a specific type of fiber modulates the microbiota and how this knowledge can be utilized for specific health applications. This research has significant implications for the development of targeted health food products and personalized nutrition recommendations.

Agriculture and Food

“Processed with Caution: Ultra-Processed Foods May Accelerate Early Signs of Parkinson’s Disease”

People who eat more ultra processed foods like cold breakfast cereal, cookies and hot dogs are more likely to have early signs of Parkinson’s disease when compared to those who eat very few ultra processed foods, according to a new study. The study does not prove that eating more ultra processed foods causes early signs of Parkinson’s disease; it only shows an association.

Avatar photo

Published

on

Eating ultra-processed foods like cold breakfast cereal, cookies, and hot dogs may speed up early signs of Parkinson’s disease, according to a recent study published in Neurology. The research found that people who consumed more of these processed foods were more likely to experience early symptoms of the disease compared to those who ate very few.

The study analyzed data from over 42,000 participants with an average age of 48, who did not have Parkinson’s disease at the start of the study. They were followed up to 26 years and completed regular medical exams and health questionnaires. Researchers also reviewed food diaries that listed what participants ate and how often.

The team looked at several types of ultra-processed foods, including sauces, spreads, or condiments; packaged sweets; snacks or desserts; artificially or sugar-sweetened beverages; animal-based products; yogurt or dairy-based desserts; and packaged savory snacks. One serving was equivalent to a single can of soda, one ounce of potato chips, one slice of packaged cake, a single hot dog, or one tablespoon of ketchup.

Researchers divided participants into five groups based on how many ultra-processed foods they ate per day on average. The highest group consumed 11 or more servings daily, while the lowest group averaged fewer than three servings daily.

After adjusting for factors like age, physical activity, and smoking, researchers found that participants who ate 11 or more servings of ultra-processed food per day had a 2.5-fold higher likelihood of having three or more early signs of Parkinson’s disease compared to those consuming fewer than three servings per day.

When looking at individual symptoms, eating more ultra-processed foods was tied to an increased risk for nearly all symptoms except constipation. The study’s author, Xiang Gao, emphasized the importance of choosing whole, nutritious foods over processed ones to maintain brain health.

While the study suggests a link between ultra-processed food consumption and early signs of Parkinson’s disease, it does not prove causation. More research is needed to confirm these findings and understand the complex relationships between diet, lifestyle, and neurodegenerative diseases.

In the meantime, individuals can take steps to reduce their exposure to ultra-processed foods by:

* Reading labels carefully
* Choosing whole grains over refined ones
* Limiting sugary drinks and snacks
* Opting for fresh fruits and vegetables instead of packaged options
* Cooking meals from scratch using fresh ingredients

By making informed food choices, individuals can contribute to a healthier brain and potentially reduce their risk of developing neurodegenerative diseases like Parkinson’s.

Continue Reading

Agriculture and Food

Feat of ‘Dung-Gineering’: Turning Cow Manure into a Sustainable Resource

A new technique to extract tiny cellulose strands from cow dung and turn them into manufacturing-grade cellulose, currently used to make everything from surgical masks to food packaging, has been developed.

Avatar photo

Published

on

A groundbreaking technique has been developed by researchers from UCL and Edinburgh Napier University to extract tiny cellulose strands from cow manure and turn them into manufacturing-grade cellulose. This innovation, published in The Journal of Cleaner Production, has the potential to create cellulose materials more cheaply and cleanly than some current manufacturing methods.

The advance is a prime example of circular economy, which aims to minimize waste and pollution by reusing and repurposing resources wherever possible. Cellulose is one of the world’s most commonly used manufacturing materials, found naturally in plant cell walls. It was first used to create synthetic materials in the mid-19th century, including photographic film.

Today, cellulose can be found in everything from cling film to surgical masks, paper products, textiles, foods, and pharmaceuticals. Although it can be extracted organically, it is often produced synthetically using toxic chemicals. The new technique, called horizontal nozzle-pressurized spinning, is an energy-efficient process that doesn’t require high voltages like other fiber production techniques.

The researchers say implementing this technology would be a win-win situation for manufacturers, dairy farmers, and the environment. Dairy farm waste, such as cow manure, is a threat to the environment and humans, especially through waterway pollution, greenhouse gas emissions when it decomposes, and the spread of pathogens. By putting this problematic waste product to good use, the technology could be a huge boost to the global dairy farming industry.

The research team is currently seeking opportunities to work with dairy farmers to take advantage of the technology and scale it up. With existing pressurized spinning machines adaptable to the new process, adapting to the logistics of sourcing and transporting cow dung might be the greater challenge.

However, the environmental and commercial benefits would be significant. As animal waste becomes a growing problem globally, this innovation offers a beacon of hope for sustainable resource management. The team is excited about the potential impact on ecosystems and human health, making it a groundbreaking achievement in “dung-gineering.”

Continue Reading

Agriculture and Food

The Dark Side of Cannabis Use in Pregnancy

A systematic evidence review finds that consuming cannabis while pregnant appears to increase the odds of preterm birth, low birth weight and infant death.

Avatar photo

Published

on

The Dark Side of Cannabis Use in Pregnancy

A recent systematic review has raised significant concerns about the risks associated with consuming cannabis while pregnant. The study, conducted by researchers at Oregon Health & Science University, analyzed 51 observational studies involving over 21 million people to examine the potential adverse effects of cannabis use during pregnancy.

The findings are alarming: consuming cannabis appears to increase the odds of preterm birth, low birth weight, and infant death. These results are consistent with definitive evidence in nonhuman primate models exposed to THC, the main psychoactive compound in cannabis.

The placenta, a vital organ responsible for supplying oxygen and nutrients to the fetus, is particularly affected by cannabis use during pregnancy. Research has shown that cannabis can lead to decreased blood flow and reduced availability of oxygen in the placenta, ultimately affecting fetal development and growth.

While many pregnant women may view cannabis as a harmless substance due to its increasingly widespread legalization, the reality is far more concerning. Cannabis remains a Schedule 1 substance under federal law, and its use during pregnancy is not recommended by medical professionals.

The lead author of the study, Dr. Jamie Lo, emphasizes the importance of prioritizing fetal health over any perceived benefits of cannabis use during pregnancy. “Abstinence is ideal,” she notes, “but it’s not realistic for many patients.” In such cases, a harm-reduction approach can be recommended, advising pregnant women to reduce their cannabis consumption and frequency to minimize potential risks.

The research, part of the Systematically Testing the Evidence on Marijuana (STEM) project, highlights the need for more comprehensive studies on the effects of cannabis use during pregnancy. By understanding these risks, healthcare providers can better counsel expectant mothers and promote healthier outcomes for both mother and child.

Sources:

* The study was published in JAMA Pediatrics.
* Funding for this research was provided by the Office of Rural Health in the Veterans Health Administration of the U.S. Department of Veterans Affairs and the National Institute on Drug Abuse of the National Institutes of Health.

Key Takeaways:

* Consuming cannabis during pregnancy appears to increase the odds of preterm birth, low birth weight, and infant death.
* The placenta is particularly affected by cannabis use during pregnancy, leading to decreased blood flow and reduced availability of oxygen.
* A harm-reduction approach can be recommended for pregnant women who cannot abstain from cannabis use.
* More comprehensive studies are needed to fully understand the effects of cannabis use during pregnancy.

Continue Reading

Trending