Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Air Quality

The Fig Trees That Fight Climate Change: A Revolutionary Carbon-Sequestering Mechanism

Kenyan fig trees can literally turn parts of themselves to stone, using microbes to convert internal crystals into limestone-like deposits that lock away carbon, sweeten surrounding soils, and still yield fruit—hinting at a delicious new weapon in the climate-change arsenal.

Avatar photo

Published

on

The Fig Trees That Fight Climate Change: A Revolutionary Carbon-Sequestering Mechanism

In a groundbreaking discovery, researchers have found that certain species of fig trees possess an extraordinary ability – they can turn themselves into stone, literally. This remarkable phenomenon, known as the oxalate-carbonate pathway, allows these trees to draw carbon dioxide from the atmosphere and store it in the surrounding soil as calcium carbonate rocks.

The research team, comprising scientists from Kenya, the US, Austria, and Switzerland, has been studying this unique ability of fig trees. They found that by using CO2 to create calcium oxalate crystals, which are then converted into calcium carbonate by specialized bacteria or fungi, these trees can sequester inorganic carbon more effectively than their counterparts that store organic carbon.

Dr. Mike Rowley, a senior lecturer at the University of Zurich, is leading the research effort. He explained that while trees have long been recognized for their ability to absorb CO2 through photosynthesis, the oxalate-carbonate pathway offers an additional benefit – the sequestration of inorganic carbon in the form of calcium carbonate.

This discovery has significant implications for climate change mitigation efforts. By choosing trees with this unique ability for agroforestry, we can not only produce food but also sequester more CO2 from the atmosphere. The team’s research highlights the potential for these trees to play a crucial role in reducing greenhouse gas emissions.

The study, which was presented at the Goldschmidt conference in Prague, focused on three species of fig trees grown in Samburu County, Kenya. The researchers identified how far from the tree the calcium carbonate was being formed and identified the microbial communities involved in the process.

One of the key findings was that Ficus wakefieldii, a specific type of fig tree, was the most effective at sequestering CO2 as calcium carbonate. The team is now planning to assess the suitability of this tree for agroforestry by quantifying its water requirements and fruit yields and conducting a more detailed analysis of how much CO2 can be sequestered under different conditions.

This research has far-reaching implications, not only for climate change mitigation but also for our understanding of the complex relationships between trees, microorganisms, and the environment. As Dr. Rowley noted, “There are many more species of trees that can form calcium carbonate, so this pathway could be a significant, underexplored opportunity to help mitigate CO2 emissions as we plant trees for forestry or fruit.”

Air Quality

The Buzz on Bees: How Environmental Change Affects Their Communication and Pollination Abilities

High heat and heavy metals dampen a bumblebee’s trademark buzz, threatening pollen release and colony chatter. Tiny sensors captured up-to-400-hertz tremors that falter under environmental stress, raising alarms for ecosystems and sparking ideas for pollination robots.

Avatar photo

Published

on

The buzz on bees has long been a topic of interest, but recent research is shedding new light on how environmental change affects their communication and pollination abilities. Scientists have found that high temperatures and exposure to heavy metals can reduce the frequency and pitch of non-flight wing vibrations in bees, which could have significant consequences for their role as pollinators.

Dr. Charlie Woodrow, a postdoctoral researcher at Uppsala University, has been studying the effect of environmental change on bee buzzes. He notes that people often don’t realize that bees use their flight muscles for functions other than flight, such as communication and defense. One important function is buzz-pollination, which involves a bee curling its body around the pollen-concealing anthers of flowers and contracting its flight muscles up to 400 times per second to produce vibrations that shake loose the pollen.

Dr. Woodrow’s experiments involved using accelerometers to measure the frequency of the buzz, which corresponds to the audible pitch. He also used thermal imaging to show how bees deal with the extra heat generated by their buzzing. The research has found that temperature plays a vital role in determining the properties of a bee’s buzz, and exposure to heavy metals can reduce the contraction frequencies of the flight muscles during non-flight buzzing.

The benefits of understanding the impact of environmental change on a bee’s buzz include unique insights into bee ecology and behavior, helping to identify species or regions most at risk, and improving AI-based species detection based on sound recordings. Dr. Woodrow suggests that buzzes could even be used as a marker of stress or environmental change.

The research also has implications for robotics and the future safeguarding of pollination services. Dr. Woodrow is working towards understanding bee vibrations through micro-robotics, so their results are also going towards developing micro-robots to understand pollen release.

Overall, the buzz on bees is more than just a curiosity; it’s an important aspect of their ecology that can provide valuable insights into environmental change and its impact on pollination services.

Continue Reading

Air Quality

Flash Floods on the Rise: How Climate Change Supercharges Summer Storms in the Alps

Fierce, fast summer rainstorms are on the rise in the Alps, and a 2 C temperature increase could double their frequency. A new study from researchers at the University of Lausanne and the University of Padova used data from nearly 300 Alpine weather stations to model this unsettling future.

Avatar photo

Published

on

The European Alps, known for their breathtaking beauty and harsh weather conditions, are expected to become even more treacherous in the years to come. A recent study by scientists at the University of Lausanne (UNIL) and the University of Padova has found that climate change is supercharging summer storms in the region, leading to an increased risk of flash floods.

The researchers analyzed data from nearly 300 weather stations across Switzerland, Germany, Austria, France, and Italy. They discovered that a 2°C rise in regional temperature could double the frequency of short-lived summer rainstorms, making them more intense and destructive.

One such extreme event occurred in June 2018, when the city of Lausanne experienced an intense rainfall episode, with 41 millimeters of precipitation falling in just 10 minutes. The resulting flood caused estimated damage of 32 million Swiss Francs and left a trail of destruction in its wake.

These short-lived events are still rare in Switzerland today but are likely to become more frequent as the climate warms. Warm air retains more moisture, intensifying thunderstorm activity, and the Alpine region is warming faster than the global average. This makes it particularly vulnerable to the impacts of climate change.

The scientists developed a statistical model incorporating physics principles to establish a link between temperature and rainfall frequency. They then used regional climate projections to simulate the future frequency of extreme precipitation events.

Their results show that an increase of just 1°C would already be highly problematic, with sudden and massive arrival of large volumes of water triggering flash floods and debris flows. This can lead to infrastructure damage and casualties, making it essential to understand how these events may evolve with climate change.

“We need to plan appropriate adaptation strategies, such as improving urban drainage infrastructure where necessary,” warns Nadav Peleg, researcher at UNIL and first author of the study.

Francesco Marra, researcher at UNIPD and one of the main authors of the study adds: “An increase of 1°C is not hypothetical; it’s likely to occur in the coming decades. We are already witnessing a tendency for summer storms to intensify, and this trend is only expected to worsen in the years ahead.”

The findings of this study should serve as a wake-up call for policymakers and residents of the Alpine region to take action now and prepare for the increased risk of flash floods brought about by climate change.

Continue Reading

Air Pollution

Toxic Twin Found: MCCPs Spotted in U.S. Air for First Time

In a surprising twist during an air quality study in Oklahoma, researchers detected MCCPs an industrial pollutant never before measured in the Western Hemisphere’s atmosphere. The team suspects these toxic compounds are entering the air through biosolid fertilizers derived from sewage sludge. While these pollutants are not yet regulated like their SCCP cousins, their similarity to dangerous “forever chemicals” and unexpected presence raise red flags about how chemical substitutions and waste disposal may be silently contaminating rural air.

Avatar photo

Published

on

The discovery of Medium Chain Chlorinated Paraffins (MCCPs) in the Western Hemisphere’s atmosphere has sent shockwaves through the scientific community. Researchers at the University of Colorado Boulder stumbled upon this finding while conducting a field campaign in an agricultural region of Oklahoma, using a high-tech instrument to measure aerosol particles and their growth in the atmosphere.

“We’re starting to learn more about this toxic, organic pollutant that we know is out there, and which we need to understand better,” said Daniel Katz, CU Boulder chemistry PhD student and lead author of the study. MCCPs are currently under consideration for regulation by the Stockholm Convention, a global treaty to protect human health from long-standing and widespread chemicals.

While SCCPs, their “little cousins,” have been regulated since 2009 in the United States, researchers hypothesize that this may have led to an increase in MCCP levels in the environment. This discovery highlights the unintended consequences of regulation, where one chemical is replaced by another with similar properties.

Using a nitrate chemical ionization mass spectrometer, the team measured air at the agricultural site 24 hours a day for one month. They cataloged the data and identified distinct isotopic patterns in the compounds. The chlorinated paraffins found in MCCPs showed new patterns that were different from known chemical compounds.

The makeup of MCCPs is similar to PFAS, or “forever chemicals,” which have been shown to break down slowly over time and are toxic to human health. Now that researchers know how to measure MCCPs, the next step might be to study their environmental impacts and seasonal changes in levels.

“We identified them, but we still don’t know exactly what they do when they are in the atmosphere, and they need to be investigated further,” Katz said. “I think it’s essential that we continue to have governmental agencies capable of evaluating the science and regulating these chemicals as necessary for public health and safety.”

Continue Reading

Trending