Connect with us

Bacteria

The Nose Knows: Certain Bacteria May Boost COVID-19 Risk

A new study has found that certain bacteria living in the nose may influence how likely someone is to get a COVID-19 infection. The research reveals that certain types of nasal bacteria can affect the levels of key proteins the virus needs to enter human cells, offering new insight into why some people are more vulnerable to COVID-19 than others.

Avatar photo

Published

on

A recent study from researchers at George Washington University has shed new light on the relationship between nasal bacteria and COVID-19 risk. Published in EBioMedicine, the research reveals that certain types of nasal bacteria can affect the levels of key proteins the virus needs to enter human cells, offering a crucial insight into why some people are more vulnerable to COVID-19 than others.

The study analyzed nasal swab samples from over 450 individuals, including those who later tested positive for COVID-19. The researchers found that those who became infected had higher levels of gene expression for two key proteins: ACE2 and TMPRSS2. ACE2 allows the virus to enter nasal cells, while TMPRSS2 helps activate the virus by cleaving its spike protein.

Those with high expression for these proteins were more than three times as likely to test positive for COVID-19, while those with moderate levels had double the risk. Notably, men with higher levels of these proteins were more likely to get infected, indicating that elevated protein levels may present a greater risk for men.

To understand what could impact the expression levels of these viral entry proteins, the researchers turned to the nasal microbiome – the diverse community of bacteria that naturally reside in the nose. They found that certain nasal bacteria may affect the expression levels of ACE2 and TMPRSS2, influencing the respiratory tract’s susceptibility to COVID-19.

The study identified three common nasal bacteria – Staphylococcus aureus, Haemophilus influenzae, and Moraxella catarrhalis/nonliquefaciens – that were linked to higher expression levels of ACE2 and TMPRSS2 and increased COVID-19 risk. On the other hand, Dolosigranulum pigrum, another common type of nasal bacteria, was connected to lower levels of these key proteins and may offer some protection against the virus.

The findings offer new potential ways to predict and prevent COVID-19 infection. The study suggests that monitoring ACE2 and TMPRSS2 gene expression could help identify individuals at higher risk for infection. The research also highlights the potential of targeting the nasal microbiome to help prevent viral infections.

“We’re only beginning to understand the complex relationship between the nasal microbiome and our health,” said Cindy Liu, associate professor of environmental and occupational health at the GW Milken Institute School of Public Health. “This study suggests that the bacteria in our nose – and how they interact with the cells and immune system in our nasal cavity – could play an important role in determining our risk for respiratory infections like COVID-19.”

The team plans to explore whether modifying the nasal microbiome, such as through nasal sprays or live biotherapeutics, could reduce the risk of infection – potentially paving the way for new ways to prevent respiratory viral infections in future pandemics.

Bacteria

Unlocking Efficiency: Researchers Reveal Secrets of Cell Division with Min Proteins

The Min protein system prevents abnormal cell division in bacteria, but is poorly understood. Researchers have uncovered how engineered e.coli bacteria control protein levels for maximum efficiency.

Avatar photo

Published

on

The Min protein system is a complex process that helps bacteria divide evenly and correctly. For decades, scientists have studied this system, but understanding how it works efficiently has been a challenge. Recently, researchers at the University of California San Diego (UCSD) made a groundbreaking discovery that sheds new light on the efficiency of cell division.

The UCSD team developed a way to control Min protein expression levels independently in E. coli cells. This allowed them to observe how different concentrations of Min proteins affect the oscillations between the poles of the cell. The results were surprising: despite varying concentrations, the oscillations remained stable across a wide range, with E. coli producing just the right amount of Min proteins.

This breakthrough is significant because it shows that the Min protein system can efficiently guide division to the correct location without relying on precise control over protein levels. This finding has far-reaching implications for our understanding of cellular organization and function.

The study was published in Nature Physics, a leading scientific journal, and was funded by the National Institutes of Health (NIH). The research team consisted of experts from both physics and chemistry/biochemistry departments at UCSD, highlighting the importance of interdisciplinary collaboration in advancing our knowledge of cellular biology.

Continue Reading

Bacteria

“Unlocking TB Diagnosis: New Molecular Label Could Lead to Simpler, Faster Tests”

Chemists found a way to identify a complex sugar molecule in the cell walls of Mycobacterium tuberculosis, the world’s deadliest pathogen. This labeling could lead to simpler, faster TB tests.

Avatar photo

Published

on

The world’s deadliest infectious disease, tuberculosis (TB), claims over 1 million lives annually. Despite advancements in diagnosis and treatment, TB remains a significant challenge, particularly in developing nations where access to chest X-rays and molecular diagnostics is limited. Current diagnostic methods often have high false negative rates and require extensive sample preparation, delaying diagnosis.

MIT chemists have developed a breakthrough approach using an organic molecule that reacts with specific sulfur-containing sugars found only in three bacterial species, including Mycobacterium tuberculosis (Mtb), the microbe responsible for TB. By labeling a glycan called ManLAM using this small-molecule tag, researchers can now visualize where it is located within the bacterial cell wall and study what happens to it throughout the first few days of tuberculosis infection.

The research team led by Laura Kiessling, Novartis Professor of Chemistry at MIT, aims to use this approach to develop a diagnostic that could detect TB-associated glycans in culture or urine samples. This would provide a cheaper and faster alternative to existing diagnostics, making it more accessible to developing nations where TB rates are high.

Using their small-molecule sensor instead of antibodies, the researchers hope to create a more sensitive test that can detect ManLAM in the urine even when only small quantities are present. This has significant implications for TB diagnosis and treatment, particularly for patients with very active cases or those who are immunosuppressed due to HIV or other conditions.

The research was funded by the National Institute of Allergy and Infectious Disease, the National Institutes of Health, the National Science Foundation, and the Croucher Fellowship. The findings have the potential to revolutionize TB diagnosis and improve patient outcomes worldwide.

Continue Reading

Bacteria

A Game-Changing ‘Treasure Chest’ for Targeted Gut Treatment: Delivering Medicine Directly to the Lower Gut

A new approach to drug design can deliver medicine directly to the gut in mice at significantly lower doses than current inflammatory bowel disease treatments. The proof-of-concept study introduced a mechanism called ‘GlycoCaging’ that releases medicine exclusively to the lower gut at doses up to 10 times lower than current therapies.

Avatar photo

Published

on

The discovery of a new approach to drug design, called GlycoCaging, has opened up promising possibilities for targeted treatment of inflammatory bowel disease (IBD) in humans. This innovative technique involves releasing medicine directly into the lower gut at significantly lower doses than current therapies.

Researchers from the University of British Columbia (UBC) have developed this mechanism, which relies on specific bacteria residing in the human gut to unlock the “treasure chest” containing the medicine. By bonding a molecule to a steroid, the researchers have created a system that can deliver potent drugs directly to the inflamed areas of the gut.

According to Dr. Harry Brumer and Dr. Laura Sly, co-senior authors of the study published in Science, this technique has the potential to revolutionize the treatment of IBD, which affects an estimated 322,600 Canadians as of 2023. The current treatments for IBD often come with serious side effects, including osteoporosis, high blood pressure, diabetes, and negative mental health outcomes.

Using mice models of IBD, the researchers demonstrated that GlycoCaging can deliver medicine at doses up to 10 times lower than non-caged versions while achieving the same anti-inflammatory effects. The study showed that the drug was targeted exclusively to the gut, with minimal absorption in other areas of the body.

The potential for human treatment is promising, as the research team found that all people had the ability to activate the drugs using the GlycoCaging system, even those with IBD. Moreover, the majority of participants had genetic markers indicating their ability to use this system.

While more advanced animal trials and human clinical trials are needed to further validate the efficacy and safety of GlycoCaging, this innovative approach has the potential to transform the treatment of IBD and other gut-related disorders. The UBC researchers have patented the technology, paving the way for future development and implementation in humans.

Continue Reading

Trending