Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Earth & Climate

Unlocking the Secrets of Milky Seas: A 400-Year Database of Bioluminescent Wonders

Milky seas are a rare bioluminescent phenomenon where vast areas of the ocean glow at night, sometimes for months. This glow, likely caused by Vibrio harveyi bacteria, has been reported by sailors for centuries but remains poorly understood due to its rarity and remote locations, mainly in the Indian Ocean. Researchers have compiled a 400-year database of sightings, using historical records and satellite data, revealing that milky seas are linked to climatic patterns like the Indian Ocean Dipole and El Nino.

Avatar photo

Published

on

For generations, sailors have reported a mysterious phenomenon: vast areas of the ocean glowing steadily at night, sometimes for months on end. The light is bright enough to read by and is oddly similar to the green and white aura cast by glow-in-the-dark stars that have decorated children’s rooms. Stretching over ocean space as broad as 100,000 square kilometers, the light can, at times, even be seen from space.

This rare bioluminescent display was coined by sailors as “milky seas.” Despite being encountered for centuries, scientists still know very little about what causes this glowing effect because they are quite rare — they usually occur in the remote regions of the Indian Ocean, far from human eyes. A likely theory is that the glow comes from activity by a luminous microscopic bacteria called Vibrio harveyi.

To better predict when milky seas will occur, researchers at Colorado State University have compiled a database of sightings over the last 400 years. Described in the journal Earth and Space Science, the archive includes eyewitness reports from sailors, individual accounts submitted to the Marine Observer Journal over an 80-year period, and contemporary satellite data. This is the first such collection of data on milky seas in 30 years.

Together, it shows that sightings usually happen around the Arabian Sea and Southeast Asian waters and are statistically related to the Indian Ocean Dipole and the El Niño Southern Oscillation. Both of those climate phenomena are known to impact global weather patterns, prompting researchers to wonder how the dazzling phenomenon may be connected to those processes.

Justin Hudson, a Ph.D. student and the paper’s first author, said the database will help researchers better anticipate when and where a milky sea will occur. The goal, he said, is to get a research vessel out to the site in time to collect information about the biology and chemistry within a milky sea. Information about those variables could be helpful to connecting the event to broader Earth systems activity.

Hudson added that the regions where milky seas occur feature a lot of biological diversity and are important economically to fishing operations.

“It is really hard to study something if you have no data about it,” Hudson said. “To this point, there is only one known photograph at sea level that came from a chance encounter by a yacht in 2019. So, there is a lot left to learn about how and why this happens and what the impacts are to those areas that experience this.”

What are the milky seas and how do they form? Bioluminescence comes in many forms across nature. One of the most common examples is a firefly’s flickering taillight. With milky seas, though, researchers are still trying to understand what is actually happening at the sea surface.

One hint comes from a research vessel that had a chance encounter with a milky sea in 1985, which was able to collect a water sample. Researchers found that a specific strain of luminous bacteria was living on the surface of algae within a bloom — possibly causing an even glow in all directions. However, that is just one data point and could be misleading.

To bridge the gap in understanding, researchers have tried to leverage information gathered from sporadic satellite imagery. Hudson said that, because of the regions most associated with the phenomenon, it seems likely the light is due to a biological process related to the bacteria.

“The regions where this happens the most are around the northwest Indian Ocean near Somalia and Socotra, Yemen, with nearly 60% of all known events occurring there,” he said. “At the same time, we know the Indian monsoon’s phases drive biological activity in the region through changes in wind patterns and currents.”

It seems possible that milky seas could be an indication of a healthy ecosystem or distressed one — the bacteria suspected to be behind it are a known pest that can negatively impact fish and crustaceans.

Having this data ready allows us to begin answering questions about milky seas beyond hoping and praying a ship runs into one accidentally.”

Air Quality

Greenland’s Glacial Runoff Fuels Explosive Growth in Ocean Life

NASA-backed simulations reveal that meltwater from Greenland’s Jakobshavn Glacier lifts deep-ocean nutrients to the surface, sparking large summer blooms of phytoplankton that feed the Arctic food web.

Avatar photo

Published

on

Greenland’s glacial runoff is fueling an explosion in ocean life, according to a recent study supported by NASA. As the ice sheet melts, it releases massive amounts of freshwater into the sea, which then interacts with the surrounding saltwater and nutrients from the depths.

The researchers used a state-of-the-art computer model called Estimating the Circulation and Climate of the Ocean-Darwin (ECCO-Darwin) to simulate the complex interactions between biology, chemistry, and physics in one pocket along Greenland’s coastline. The study revealed that glacial runoff delivers nutrients like iron and nitrate, essential for phytoplankton growth, to the surface waters.

Phytoplankton are tiny plant-like organisms that form the base of the ocean food web. They take up carbon dioxide and produce oxygen as byproducts of photosynthesis. In Arctic waters, their growth rate has surged 57% between 1998 and 2018 alone. The study found that glacial runoff boosts summertime phytoplankton growth by 15 to 40% in the study area.

Increased phytoplankton blooms can have a positive impact on Greenland’s marine animals and fisheries. However, untangling the impacts of climate change on the ecosystem will take time and further research. The team plans to extend their simulations to the whole Greenland coast and beyond.

The study also highlights the interconnectedness of the ocean ecosystem, with phytoplankton blooms influencing the carbon cycle both positively and negatively. While glacial runoff makes seawater less able to dissolve carbon dioxide, the bigger blooms of phytoplankton take up more carbon dioxide from the air as they photosynthesize, offsetting this loss.

The researchers emphasize that their approach is applicable to any region, making it a powerful tool for studying ocean ecosystems worldwide. As climate change continues to reshape our planet, understanding these complex interactions will be essential for predicting and mitigating its impacts on marine life and ecosystems.

Continue Reading

Atmosphere

NASA’s SWOT Satellite Captures Kamchatka Megaquake Tsunami in Stunning Detail

When a massive 8.8 magnitude earthquake struck off Russia’s Kamchatka Peninsula, NASA and CNES’s SWOT satellite captured a rare and detailed picture of the tsunami that followed. Recorded just over an hour after the quake, the satellite revealed the wave’s height, shape, and path, offering scientists an unprecedented multidimensional view from space.

Avatar photo

Published

on

The recent megaquake that struck off the coast of Russia’s Kamchatka Peninsula has been captured in striking detail by NASA’s SWOT satellite. Launched jointly with the French space agency CNES, the SWOT satellite is equipped with a unique radar system that can measure ocean topography and water levels across vast areas.

On July 30, at around 11:25 a.m. local time, an 8.8 magnitude earthquake struck off the coast of Kamchatka, generating a massive tsunami wave. The SWOT satellite captured the leading edge of this tsunami just 70 minutes after the quake hit. This remarkable footage has provided scientists with crucial data to improve tsunami forecast models.

The data collected by the SWOT satellite included measurements of the wave height exceeding 1.5 feet (45 centimeters), as well as a detailed look at the shape and direction of travel of the leading edge of the tsunami. These observations have been plotted against a forecast model produced by the U.S. National Oceanic and Atmospheric Administration (NOAA) Center for Tsunami Research.

Comparing these observations to the model helps forecasters validate their predictions, ensuring that they can provide accurate early warnings to coastal communities in the event of a tsunami. As Nadya Vinogradova Shiffer, NASA Earth lead and SWOT program scientist at NASA Headquarters, explained, “The power of SWOT’s broad, paintbrush-like strokes over the ocean is in providing crucial real-world validation, unlocking new physics, and marking a leap towards more accurate early warnings and safer futures.”

Ben Hamlington, an oceanographer at NASA’s Jet Propulsion Laboratory, highlighted the significance of the 1.5-foot-tall wave captured by SWOT, saying that what might seem like a small wave in open waters can become a massive 30-foot wave in shallower coastal areas.

The data collected by the SWOT satellite has already helped scientists improve their tsunami forecast models at NOAA’s Center for Tsunami Research. This is a crucial step towards enhancing operational tsunami forecasts and saving lives. As Josh Willis, a JPL oceanographer, noted, “The satellite observations help researchers to better reverse engineer the cause of a tsunami, and in this case, they also showed us that NOAA’s tsunami forecast was right on the money.”

This breakthrough has significant implications for coastal communities around the world. By providing more accurate early warnings, SWOT data can save lives and reduce damage caused by tsunamis. As Vasily Titov, the center’s chief scientist in Seattle, emphasized, “It suggests SWOT data could significantly enhance operational tsunami forecasts — a capability sought since the 2004 Sumatra event.” The devastating tsunami generated by that quake killed thousands of people and caused widespread destruction in Indonesia.

The SWOT satellite was jointly developed by NASA and CNES, with contributions from the Canadian Space Agency (CSA) and the UK Space Agency. NASA JPL leads the U.S. component of the project, providing a Ka-band radar interferometer instrument, a GPS science receiver, a laser retroreflector, a two-beam microwave radiometer, and NASA instrument operations.

This groundbreaking technology has opened up new possibilities for scientists to better understand ocean dynamics and improve tsunami forecasting models. As SWOT continues to capture stunning images of our oceans, it will undoubtedly play a vital role in enhancing operational tsunami forecasts and saving lives around the world.

Continue Reading

Climate

The Ocean’s Fragile Fortresses: Uncovering the Impact of Climate Change on Bryozoans

Mediterranean bryozoans, including the “false coral,” are showing alarming changes in structure and microbiomes under acidification and warming. Field studies at volcanic CO₂ vents reveal that these stressors combined sharply reduce survival, posing risks to marine ecosystems.

Avatar photo

Published

on

The Ocean’s Fragile Fortresses: Uncovering the Impact of Climate Change on Bryozoans

Bryozoans, small colonial invertebrates, play a vital role in forming marine habitats. However, their response to environmental changes has long been overlooked. A recent study published in Communications Biology sheds light on how ocean acidification and warming can affect bryozoan colonies, with crucial implications for marine conservation.

The researchers from the Institut de Ciències del Mar (ICM-CSIC) used a natural laboratory on the island of Ischia, Italy, to simulate the conditions projected for the end of the century. They analyzed the morphology, skeleton mineralogy, and microbiome of two bryozoan species exposed to these conditions. The findings revealed that the species exhibit some acclimation capacity, modifying their skeletal mineralogy to become more resistant.

However, a loss in functional microbial diversity was observed, with a decline in genera potentially involved in key processes such as nutrition, defense, or resistance to environmental stress. This suggests that even if colonies look externally healthy, changes in the microbiome could serve as early bioindicators of environmental stress.

The study also considered the effects of rising temperatures, another key factor in climate change. The models used indicate that the combination of these two stressors intensifies the effects observed, significantly reducing the coverage of the encrusting bryozoan and increasing mortality.

These findings have important implications for marine conservation. Habitat-forming species like bryozoans are not only vulnerable but their disappearance could trigger cascading effects on many other species that rely on them for shelter or food. The characterization of the microbiome and preliminary identification of potentially beneficial microorganisms open new research avenues to enhance the resilience of holobionts (host and its associated microbiome) through nature-based approaches.

The complexity of this issue demands integrated analyses, highlighting the importance of interdisciplinary approaches in anticipating future scenarios and protecting marine ecosystems.

Continue Reading

Trending