Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Alzheimer's

Unlocking the Secrets of Heart Health through AI-Powered Mammograms

Mammograms, with the help of artificial intelligence (AI) models, may reveal much more than cancer, according to a new study. The findings highlight how these important cancer screening tools can also be used to assess the amount of calcium buildup in the arteries within breast tissue — an indicator of cardiovascular health.

Avatar photo

Published

on

The American College of Cardiology’s Annual Scientific Session (ACC.25) recently showcased a groundbreaking study that sheds new light on the capabilities of mammograms. These essential cancer screening tools have long been used to detect breast cancer, but now, with the aid of artificial intelligence (AI) models, they can also serve as a window into heart health.

The U.S. Centers for Disease Control and Prevention recommends that middle-aged and older women receive regular mammograms, which are performed over 40 million times annually in the United States. However, radiologists typically do not quantify or report information on breast artery calcifications, which can be seen on these images. This study demonstrates how AI image analysis techniques can automatically analyze breast arterial calcification and provide a cardiovascular risk score.

“We see an opportunity for women to get screened for cancer and also receive a cardiovascular screen from their mammograms,” said Theo Dapamede, MD, PhD, the lead author of the study. The researchers used an AI model to segment calcified vessels in mammogram images and calculate the future risk of cardiovascular events based on data obtained from electronic health record data.

The findings are significant, as heart disease is the leading cause of death in the United States, yet it remains underdiagnosed in women and awareness about this condition lags. By utilizing AI-enabled mammogram screening tools, researchers can identify more women with early signs of cardiovascular disease, taking advantage of routine screenings that many women already receive.

A buildup of calcium in blood vessels is a sign of cardiovascular damage associated with early-stage heart disease or aging. Previous studies have shown that women with calcium buildup in the arteries face a 51% higher risk of heart disease and stroke.

To develop this screening tool, researchers trained a deep-learning AI model on a large dataset, which included images and health records from over 56,000 patients who had a mammogram at Emory Healthcare between 2013 and 2020. The model was then tested for its ability to characterize patients’ cardiovascular risk as low, moderate, or severe based on mammogram images.

The results showed that the AI model performed well in characterizing patients’ cardiovascular risk. After calculating the risk of dying from any cause or suffering an acute heart attack, stroke, or heart failure at two years and five years, the model demonstrated that the rate of these serious cardiovascular events increased with breast arterial calcification level in two of the three age categories assessed – women younger than age 60 and age 60-80, but not in those over age 80.

The researchers also found that women with the highest level of breast arterial calcification (above 40 mm2) had a significantly lower five-year rate of event-free survival compared to those with the lowest level (below 10 mm2). This translates to approximately 2.8 times the risk of death within five years in patients with severe breast arterial calcification compared to those with little to no breast arterial calcification.

The AI model was developed as a collaboration between Emory Healthcare and Mayo Clinic, but it is not currently available for use. If it passes external validation and gains approval from the U.S. Food and Drug Administration, researchers said the tool could be made commercially available for other healthcare systems to incorporate into routine mammogram processing and follow-up care.

The researchers also plan to explore how similar AI models could be used for assessing biomarkers for other conditions, such as peripheral artery disease and kidney disease, that might be extracted from mammograms.

Alzheimer's

Scientists Unlock Secret to Reversing Memory Loss by Boosting Brain’s Energy Engines

Scientists have discovered a direct cause-and-effect link between faulty mitochondria and the memory loss seen in neurodegenerative diseases. By creating a novel tool to boost mitochondrial activity in mouse models, researchers restored memory performance, suggesting mitochondria could be a powerful new target for treatments. The findings not only shed light on the early drivers of brain cell degeneration but also open possibilities for slowing or even preventing diseases like Alzheimer’s.

Avatar photo

Published

on

Scientists have made a groundbreaking discovery that could potentially reverse memory loss associated with neurodegenerative diseases. Researchers from Inserm and the University of Bordeaux, in collaboration with colleagues from the Université de Moncton in Canada, have successfully established a causal link between mitochondrial dysfunction and cognitive symptoms related to these conditions.

Mitochondria are tiny energy-producing structures within cells that provide the power needed for proper functioning. The brain is one of the most energy-demanding organs, relying on mitochondria to produce energy for neurons to communicate with each other. When mitochondrial activity is impaired, neurons fail to function correctly, leading to progressive neuronal degeneration and eventually, cell death.

In Alzheimer’s disease, for example, it has been observed that impaired mitochondrial activity precedes neuronal degeneration and ultimately, leads to memory loss. However, due to the lack of suitable tools, researchers were unable to determine whether mitochondrial alterations played a causal role in these conditions or were simply a consequence of the pathophysiological process.

In this pioneering study, researchers developed a unique tool that temporarily stimulates mitochondrial activity. By activating G proteins directly in mitochondria using an artificial receptor called mitoDreadd-Gs, they successfully restored both mitochondrial activity and memory performance in dementia mouse models.

“This work is the first to establish a cause-and-effect link between mitochondrial dysfunction and symptoms related to neurodegenerative diseases,” explains Giovanni Marsicano, Inserm research director. “Impaired mitochondrial activity could be at the origin of the onset of neuronal degeneration.”

The tool developed by researchers has opened doors to considering mitochondria as a new therapeutic target for treating memory loss associated with neurodegenerative diseases. Further studies are needed to measure the effects of continuous stimulation of mitochondrial activity and determine its potential impact on symptoms and neuronal loss.

Ultimately, this research holds promise for identifying molecular and cellular mechanisms responsible for dementia, facilitating the development of effective therapeutic targets, and potentially delaying or even preventing memory loss associated with neurodegenerative diseases.

Continue Reading

Alzheimer's

A Breakthrough in Brain Research: Scientists Grow a Mini Human Brain that Lights Up and Connects Like the Real Thing

Scientists at Johns Hopkins have grown a first-of-its-kind organoid mimicking an entire human brain, complete with rudimentary blood vessels and neural activity. This new “multi-region brain organoid” connects different brain parts, producing electrical signals and simulating early brain development. By watching these mini-brains evolve, researchers hope to uncover how conditions like autism or schizophrenia arise, and even test treatments in ways never before possible with animal models.

Avatar photo

Published

on

The groundbreaking research conducted at Johns Hopkins University has led to the creation of a novel whole-brain organoid, which is set to revolutionize the field of neuropsychiatric disorders. This miniature human brain, comprising neural tissues and rudimentary blood vessels, is an unprecedented achievement that could lead to a better understanding of conditions such as autism.

Lead author Annie Kathuria, an assistant professor in JHU’s Department of Biomedical Engineering, explained that most previous attempts at growing brain organoids focused on individual regions, such as the cortex or hindbrain. However, their research has succeeded in generating a multi-region brain organoid (MRBO), which represents a significant step forward.

The MRBO retains a broad range of types of neuronal cells, characteristic of a human brain in its early stages of development. This miniature brain weighs around 6 million to 7 million neurons compared to tens of billions found in adult brains. The researchers were able to stick the individual parts together using sticky proteins that act as a biological superglue.

As the tissues began to grow together, they started producing electrical activity and responding as a network. The creation of an early blood-brain barrier formation was also observed, which is essential for controlling molecule passage through the brain.

This breakthrough has far-reaching implications for studying neuropsychiatric disorders such as autism, schizophrenia, and Alzheimer’s disease. Whole-brain organoids will enable researchers to watch disorders develop in real-time, test experimental drugs, and tailor therapies to individual patients. The potential for improved clinical trial success is also substantial, with the current fail rate of 85% to 90% for neuropsychiatric drugs.

Using whole-brain organoids could lead to the discovery of new targets for drug screening and provide a more accurate representation of human brain development. As Kathuria emphasized, “We need to study models with human cells if you want to understand neurodevelopmental disorders or neuropsychiatric disorders.” The creation of this miniature human brain is an exciting step forward in brain research and has the potential to lead to significant advancements in the field.

Continue Reading

Alzheimer's

“Unlocking Brain Health: Scientists Discover Key Receptor for Microglia to Fight Alzheimer’s”

Scientists at UCSF have uncovered how certain immune cells in the brain, called microglia, can effectively digest toxic amyloid beta plaques that cause Alzheimer’s. They identified a key receptor, ADGRG1, that enables this protective action. When microglia lack this receptor, plaque builds up quickly, causing memory loss and brain damage. But when the receptor is present, it seems to help keep Alzheimer’s symptoms mild. Since ADGRG1 belongs to a drug-friendly family of receptors, this opens the door to future therapies that could enhance brain immunity and protect against Alzheimer’s in more people.

Avatar photo

Published

on

The scientific community has made significant strides in understanding the complex mechanisms behind Alzheimer’s disease. A recent study by researchers at UC San Francisco has shed light on how microglia, immune cells that play a crucial role in maintaining brain health, can break down and remove toxic proteins associated with the disease. This groundbreaking discovery could pave the way for novel therapeutic approaches to combat Alzheimer’s.

In Alzheimer’s, proteins like amyloid beta clump together, forming plaques that damage the brain. However, in some individuals, microglia effectively engulf and digest these proteins before they can cause harm. The resulting few and smaller clumps are associated with milder symptoms. Researchers at UCSF identified a molecular receptor, ADGRG1, which enables microglia to perform this critical function.

Using a mouse model of Alzheimer’s disease, the researchers observed that the loss of ADGRG1 led to a rapid buildup of amyloid plaques, neurodegeneration, and problems with learning and memory. The study also reanalyzed data from a prior human brain expression study, finding that individuals who died of mild Alzheimer’s had microglia with abundant ADGRG1, whereas those with severe Alzheimer’s had very little ADGRG1.

This discovery has significant implications for the development of new therapies. Since ADGRG1 is one of hundreds of G protein-coupled receptors targeted in drug development, it may be feasible to rapidly translate this finding into new treatments. As Dr. Piao noted, “Some people are lucky to have responsible microglia, but this discovery creates an opportunity to develop drugs to make microglia effective against amyloid-beta in everyone.” The potential for breakthrough therapies is exciting news for those affected by Alzheimer’s and their loved ones.

Continue Reading

Trending