Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Diet and Weight Loss

Uncovering the Cellular Culprit Behind Age-Related Abdominal Fat: A New Target for Future Therapies

It’s no secret that our waistlines often expand in middle-age, but the problem isn’t strictly cosmetic. Belly fat accelerates aging and slows down metabolism, increasing our risk for developing diabetes, heart problems and other chronic diseases. Exactly how age transforms a six pack into a softer stomach, however, is murky. New research shows how aging shifts stem cells into overdrive to create more belly fat.

Avatar photo

Published

on

The article reveals that age-related abdominal fat is not just a cosmetic issue but also accelerates aging and increases the risk of developing chronic diseases such as diabetes and heart problems. The research, conducted by City of Hope and UCLA, has uncovered the cellular culprit behind this phenomenon: adult stem cells called adipocyte progenitor cells (APCs). These cells are responsible for producing new fat cells, especially around the belly.

The study’s findings suggest that aging triggers the arrival of a new type of adult stem cell, which enhances the body’s massive production of new fat cells. The researchers discovered that APCs from older mice rapidly generate a colossal amount of fat cells when transplanted into young mice. In contrast, APCs from young mice do not produce many new fat cells when transplanted into older mice.

Using single-cell RNA sequencing, the scientists compared APC gene activity in young and older mice. They found that while barely active in young mice, APCs woke up with a vengeance in middle-aged mice and began pumping out new fat cells. This is the first evidence that our bellies expand with age due to the APCs’ high output of new fat cells.

A signaling pathway called leukemia inhibitory factor receptor (LIFR) proved critical for promoting these cells to multiply and evolve into fat cells. The researchers also identified similar CP-A cells in human tissue samples from people of various ages, illustrating that CP-As have a high capacity for creating new fat cells.

The study’s findings highlight the importance of controlling new fat-cell formation to address age-related obesity. Understanding the role of CP-As in metabolic disorders and how these cells emerge during aging could lead to new medical solutions for reducing belly fat and improving health and longevity. Future research will focus on tracking CP-A cells in animal models, observing CP-A cells in humans, and developing new strategies that eliminate or block the cells to prevent age-related fat gain.

Alzheimer's

Unlocking the Brain’s Sugar Code: Scientists Discover a New Player in the Battle Against Alzheimer’s

Scientists have uncovered a surprising sugar-related mechanism inside brain cells that could transform how we fight Alzheimer’s and other dementias. It turns out neurons don’t just store sugar for fuel—they reroute it to power antioxidant defenses, but only if an enzyme called GlyP is active. When this sugar-clearing system is blocked, toxic tau protein builds up and accelerates brain degeneration.

Avatar photo

Published

on

The battle against Alzheimer’s disease and other forms of dementia has just received a surprise player: brain sugar metabolism. A new study from scientists at the Buck Institute for Research on Aging has revealed that breaking down glycogen – a stored form of glucose – in neurons may protect the brain from toxic protein buildup and degeneration.

Glycogen is typically thought of as a reserve energy source stored in the liver and muscles, but small amounts also exist in the brain. The research team, led by postdoc Sudipta Bar, PhD, discovered that in both fly and human models of tauopathy (a group of neurodegenerative diseases including Alzheimer’s), neurons accumulate excessive glycogen. This buildup appears to contribute to disease progression.

Tau, the infamous protein that clumps into tangles in Alzheimer’s patients, physically binds to glycogen, trapping it and preventing its breakdown. When glycogen can’t be broken down, the neurons lose an essential mechanism for managing oxidative stress, a key feature in aging and neurodegeneration.

By restoring the activity of an enzyme called glycogen phosphorylase (GlyP), which kicks off the process of glycogen breakdown, the researchers found they could reduce tau-related damage in fruit flies and human stem cell-derived neurons. Rather than using glycogen as a fuel for energy production, these enzyme-supported neurons rerouted the sugar molecules into the pentose phosphate pathway (PPP) – a critical route for generating NADPH (nicotinamide adenine dinucleotide phosphate) and Glutathione, molecules that protect against oxidative stress.

The team demonstrated that dietary restriction (DR) naturally enhanced GlyP activity and improved tau-related outcomes in flies. They further mimicked these effects pharmacologically using a molecule called 8-Br-cAMP, showing that the benefits of DR might be reproduced through drug-based activation of this sugar-clearing system.

Researchers also confirmed similar glycogen accumulation and protective effects of GlyP in human neurons derived from patients with frontotemporal dementia (FTD), strengthening the potential for translational therapies. The study emphasizes the power of the fly as a model system in uncovering how metabolic dysregulation impacts neurodegeneration.

The researchers acknowledge the Buck’s highly collaborative atmosphere as a major factor in the work, highlighting the expertise in fly aging and neurodegeneration, proteomics, human iPSCs, and neurodegeneration. The study not only highlights glycogen metabolism as an unexpected hero in the brain but also opens up a new direction in the search for treatments against Alzheimer’s and related diseases.

By discovering how neurons manage sugar, we may have unearthed a novel therapeutic strategy: one that targets the cell’s inner chemistry to fight age-related decline. As we continue to age as a society, findings like these offer hope that better understanding – and perhaps rebalancing – our brain’s hidden sugar code could unlock powerful tools for combating dementia.

Continue Reading

Diabetes

The Ancient Longevity Switch: How Morning Coffee Could Be Slowing Down Your Ageing Process

Caffeine appears to do more than perk you up—it activates AMPK, a key cellular fuel sensor that helps cells cope with stress and energy shortages. This could explain why coffee is linked to better health and longer life.

Avatar photo

Published

on

The scientific community has made another groundbreaking discovery that reveals how our beloved morning coffee might be doing more than just waking us up. A recent study conducted by researchers at Queen Mary University of London’s Cenfre for Molecular Cell Biology sheds light on the potential anti-ageing properties of caffeine, the world’s most popular neuroactive compound.

The research, published in the journal Microbial Cell, delves into the intricate mechanisms within our cells and how they respond to stress and nutrient availability. The scientists used a single-celled organism called fission yeast as a model to understand how caffeine affects ageing at a cellular level.

One of the key findings was that caffeine doesn’t act directly on the growth regulator called TOR (Target of Rapamycin), which is responsible for controlling energy and stress responses in living things for over 500 million years. Instead, it works by activating another crucial system called AMPK, a cellular fuel gauge that is evolutionarily conserved in yeast and humans.

“When your cells are low on energy, AMPK kicks in to help them cope,” explains Dr Charalampos (Babis) Rallis, Reader in Genetics, Genomics, and Fundamental Cell Biology at Queen Mary University of London, the study’s senior author. “And our results show that caffeine helps flip that switch.”

The implications of this discovery are significant, as AMPK is also the target of metformin, a common diabetes drug being studied for its potential to extend human lifespan together with rapamycin. The researchers demonstrated using their yeast model that caffeine’s effect on AMPK influences how cells grow, repair their DNA, and respond to stress – all of which are tied to ageing and disease.

These findings open up exciting possibilities for future research into how we might trigger these effects more directly – with diet, lifestyle, or new medicines. So, the next time you reach for your coffee, remember that it might be doing more than just boosting your focus – it could also be giving your cells a helping hand in slowing down your ageing process.

Continue Reading

Alzheimer's

Groundbreaking Study Suggests Link Between Semaglutide and Lower Dementia Risk in Type 2 Diabetes Patients

A blockbuster diabetes and weight-loss drug might be doing more than controlling blood sugar—it could also be protecting the brain. Researchers at Case Western Reserve University found that people with type 2 diabetes who took semaglutide (the active ingredient in Ozempic and Wegovy) had a significantly lower risk of developing dementia. The benefit was especially strong in women and older adults.

Avatar photo

Published

on

A recent study by researchers at the Case Western Reserve School of Medicine has made an astonishing discovery that may revolutionize the way we approach dementia prevention. The research team found that semaglutide, a popular medication used to treat diabetes and aid in weight loss, could significantly lower the risk of dementia in people with type 2 diabetes (T2D).

Dementia is a devastating condition that affects millions worldwide, causing memory loss and cognitive decline. It occurs when brain cells are damaged, disrupting their connections and ultimately leading to this debilitating state. Encouragingly, studies indicate that approximately 45% of dementia cases could be prevented by addressing modifiable risk factors.

The study, published in the Journal of Alzheimer’s Disease, analyzed three years’ worth of electronic records from nearly 1.7 million T2D patients nationally. The researchers used a statistical approach that mimicked a randomized clinical trial to determine the effectiveness of semaglutide in preventing dementia.

Their findings suggest that patients prescribed semaglutide had a significantly lower risk of developing Alzheimer’s disease-related dementia compared to those taking other anti-diabetic medications, including GLP-1R-targeting medications. These results were even more pronounced in women and older adults.

Semaglutide, a glucagon-like peptide receptor (GLP-1R) molecule that decreases hunger and regulates blood sugar levels in T2D patients, has shown remarkable benefits beyond its primary use as a diabetes treatment. It also reduces the risk of cardiovascular diseases, further solidifying its potential in preventing dementia.

The study’s lead researcher, biomedical informatics professor Rong Xu, stated, “There is no cure or effective treatment for dementia, so this new study provides real-world evidence for its potential impact on preventing or slowing dementia development among at-high risk populations.”

While the findings are promising, it’s essential to note that further research through randomized clinical trials will be necessary to confirm the causal relationship between semaglutide and dementia prevention. Nevertheless, this groundbreaking study offers a glimmer of hope in the quest to combat dementia and improve the lives of millions worldwide.

Continue Reading

Trending