Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Alzheimer's

Breaking Ground in ALS Research: Uncovering Early Signs of Disease and New Treatment Targets

Using the gene scissors CRISPR and stem cells, researchers have managed to identify a common denominator for different gene mutations that all cause the neurological disease ALS. The research shows that ALS-linked dysfunction occurs in the energy factories of nerve cells, the mitochondria, before the cells show other signs of disease, which was not previously known.

Avatar photo

Published

on

Breaking Ground in ALS Research: Uncovering Early Signs of Disease and New Treatment Targets

Researchers at Stockholm University and the UK Dementia Research Institute (UK DRI) have made a groundbreaking discovery that could revolutionize the treatment of Amyotrophic Lateral Sclerosis (ALS). The study, published in Nature Communications, reveals that ALS-linked dysfunction occurs in the energy factories of nerve cells, called mitochondria, before the cells show other signs of disease.

“We show that the nerve cells, termed motor neurons, that will eventually die in ALS have problems soon after they are formed. We saw the earliest sign of problems in the cell’s energy factories, the mitochondria, and also in how they are transported out into the nerve cells’ long processes where there is a great need for them and the energy they produce,” says Dr Eva Hedlund at Stockholm University, head of the study together with Dr Marc-David Ruepp at the UK Dementia Research Institute.

The research team used the gene scissors CRISPR/Cas9 to introduce various ALS-causing mutations into human stem cells, called iPS cells. From these, motor neurons and interneurons were produced, which were then analyzed with single-cell RNA sequencing. The data obtained showed a common disease signature across all ALS-causing mutations, unique to motor neurons.

This happened very early and was completely independent of whether the disease-causing mutated proteins (FUS, or TDP-43) were in the wrong place in the cell or not. “Until now, it has been believed that it is the change where the proteins are within the cells, called mislocalization, that occurs first,” says Dr Marc-David Ruepp.

The researchers also found that most errors arising from ALS-causing mutations are caused by a new toxic property of the protein, not by a loss of function. A third discovery was that the transport of mitochondria out into the axons is radically affected in the ALS lines, independently of whether the disease-causing proteins were in the wrong place in the cell or not.

The new discoveries open up for early treatment methods, something that for the research team is a continuous work in progress. “We are trying to understand how these early errors occur in the sensitive motor neurons in ALS, and how it affects energy levels in the cells and their communication and necessary contacts with muscle fibers,” says Dr Eva Hedlund.

The study’s findings have significant implications for ALS treatment and provide new targets for therapies. The research team is now working on understanding the mechanisms behind these early errors and how to address them, hoping to improve the lives of people affected by this devastating disease.

Alzheimer's

Breaking New Ground: Immune System Discovery Offers Potential Solution to Alzheimer’s

A new way of thinking about Alzheimer’s disease has yielded a discovery that could be the key to stopping the cognitive decline seen in Alzheimer’s and other neurodegenerative diseases, including ALS and Parkinson’s.

Avatar photo

Published

on

Breaking New Ground: Immune System Discovery Offers Potential Solution to Alzheimer’s

A groundbreaking study has shed new light on the relationship between the immune system and Alzheimer’s disease. Researchers at the University of Virginia School of Medicine have discovered that an immune molecule called STING plays a crucial role in driving the formation of amyloid plaques and tau tangles, hallmarks of Alzheimer’s.

The study found that blocking STING activity in lab mice protected them from mental decline, suggesting a promising new target for developing treatments. This breakthrough has far-reaching implications for understanding and treating not only Alzheimer’s but also other neurodegenerative diseases like Parkinson’s disease, amyotrophic lateral sclerosis (ALS), and dementia.

“The findings demonstrate that the DNA damage that naturally accumulates during aging triggers STING-mediated brain inflammation and neuronal damage in Alzheimer’s disease,” said researcher John Lukens, PhD. “These results help to explain why aging is associated with increased Alzheimer’s risk and uncover a novel pathway to target in the treatment of neurodegenerative diseases.”

The study, published in Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, involved a team of researchers from UVA’s Department of Neuroscience and Center for Brain Immunology and Glia (BIG Center). They found that removing STING dampened microglial activation around amyloid plaques, protected nearby neurons from damage, and improved memory function in Alzheimer’s model mice.

The discovery of STING as a key player in the development of neurodegenerative diseases opens new doors for research into potential treatments. While much more work is needed to translate these findings into effective therapies, this breakthrough has sparked hope among researchers and patients alike.

“Our hope is that this work moves us close to finding safer and more effective ways to protect the aging brain,” said Lukens. “Shedding light on how STING contributes to that damage may help us target similar molecules and ultimately develop effective disease-modifying treatments.”

Continue Reading

Alzheimer's

Double Dementia Risk for Men with Common Gene Variant

New research has found that men who carry a common genetic variant are twice as likely to develop dementia in their lifetime compared to women.

Avatar photo

Published

on

Research has discovered that men who carry a common genetic variant are twice as likely to develop dementia in their lifetime compared to women. This groundbreaking study, published in Neurology, used data from the ASPirin in Reducing Events in the Elderly (ASPREE) trial to investigate whether people with variants in the haemochromatosis (HFE) gene might be at increased risk of dementia.

One in three people carry one copy of the H63D variant, while one in 36 carry two copies. Having just one copy of this gene variant does not impact someone’s health or increase their risk of dementia. However, having two copies of the variant more than doubled the risk of dementia in men, but not women.

The researchers emphasize that the genetic variant itself cannot be changed, but the brain pathways affected by it could potentially be treated if we understood more about it. Further research is needed to investigate why this genetic variant increased the risk of dementia for males but not females.

The findings suggest that perhaps testing for the HFE gene could be offered to men more broadly, considering its routine testing in most Western countries, including Australia, when assessing people for haemochromatosis – a disorder that causes the body to absorb too much iron. The study found no direct link between iron levels in the blood and increased dementia risk in affected men.

This points to other mechanisms at play, possibly involving the increased risk of brain injury from inflammation and cell damage in the body. Understanding why men with the double H63D variant are at higher risk could pave the way for more personalized approaches to prevention and treatment.

The ASPREE trial was a groundbreaking study that created a treasure trove of healthy ageing data, which has underpinned a wealth of research studies. This collaboration between Curtin University, Monash University, The University of Melbourne, The Royal Children’s Hospital, Murdoch Children’s Research Institute, and Fiona Stanley Hospital demonstrates the importance of diverse Australian research groups working together to improve health outcomes for people around the world.

The implications of this study are significant, considering that more than 400,000 Australians are currently living with dementia, with around a third of those being men. This discovery could lead to improved outcomes for people at risk of developing dementia and ultimately contribute to a better understanding of these progressive diseases.

Continue Reading

Alzheimer's

Gene Editing Revolutionizes Huntington’s Disease Treatment with Breakthrough in DNA Repeat Disruption

Researchers have developed a way to edit the genetic sequences at the root of Huntington’s disease and Friedreich’s ataxia. If longer than a certain threshold length, these sequences grow in length uncontrollably and lead to brain cell death in Huntington’s disease, and the breakdown of nerve fibers in Friedreich’s ataxia. There are no treatments that stop the progression of these diseases. Using base editing, the team introduced single-letter changes into the middle of the repeated stretch of DNA, interrupting the sequence in patient cells and mouse models of Huntington’s disease and Friedreich’s ataxia. They found that the edited DNA tracts stayed the same in length or even became shorter over time.

Avatar photo

Published

on

The Broad Institute has made a groundbreaking discovery in treating Huntington’s disease and Friedreich’s ataxia by developing a novel approach to edit the genetic sequences responsible for these conditions. These severe neurological disorders are caused by repeated three-letter stretches of DNA that grow uncontrollably, leading to brain cell death or nerve fiber breakdown. The researchers have successfully disrupted this repeat sequence using base editing, a technique that introduces single-letter changes into the middle of the repeated stretch of DNA.

The study, published in Nature Genetics, was led by David Liu, the Richard Merkin Professor and director of the Merkin Institute of Transformative Technologies in Healthcare at the Broad. The research team included postdoctoral researcher Mandana Arbab, graduate student Zaneta Matuszek, and associate scientist Ricardo Mouro Pinto.

The breakthrough comes from the realization that some individuals with the same disease can inherit different numbers of DNA repeats, with more repeats generally leading to faster symptom progression. However, patients who have naturally occurring single-letter interruptions within these repeats often experience milder symptoms and are less likely to pass their disease along to their children. This observation inspired the researchers to develop a gene-editing therapy that could install an interruption mimicking those that occur naturally.

Using base editing, developed by Liu’s lab in 2016 for making single-letter changes in DNA, the team introduced interruptions into the repeat sequences of patient cells and mouse models of Huntington’s disease and Friedreich’s ataxia. The results showed that the edited DNA tracts stayed the same or even became shorter over time.

The researchers caution that more work is needed to catalog potential side effects of installing these edits in the genome, but the approach could be a valuable tool for understanding diseases caused by repeated three-letter sequences. “A lot more studies would be needed before we can know if disrupting these repeats with a base editor could be a viable therapeutic strategy to treat patients,” said Liu.

The team’s findings suggest that this gene-editing therapy could help treat Huntington’s, Friedreich’s ataxia, and other trinucleotide repeat disorders. “Not only does this study show for the first time that inducing interruptions has a profound stabilizing effect on repeats, but that the base-editing approach we’ve used can also be applied to study any of over a dozen repeat disorders,” said Arbab.

The research was supported by various organizations, including the Chan Zuckerberg Initiative, Lodish Family Foundation, National Institutes of Health, and Howard Hughes Medical Institute. The team is now developing a different approach using prime editing to replace disease-causing repeat tracts with a shorter, stable number of repeats all at once.

Continue Reading

Trending