Connect with us

Air Pollution

Exposure to Air Pollution in Childhood: A Threat to Brain Development and Connectivity

A new study has found that children exposed to higher levels of air pollution in early and mid childhood have weaker connections between key brain regions. The findings highlight the potential impact of early exposure to air pollution on brain development.

Avatar photo

Published

on

Exposure to air pollution in childhood is associated with reduced brain connectivity, according to a recent study published in Environment International. The research, led by the Barcelona Institute for Global Health (ISGlobal), found that children exposed to higher levels of air pollution in early and mid-childhood have weaker connections between key brain regions.

The study analyzed data from 3,626 children from the Generation R cohort in Rotterdam, the Netherlands. Exposure to air pollution at the participants’ residence was estimated using statistical models that combine actual measurements with environmental characteristics. Brain connectivity was then assessed both between and within networks, including 13 cortical networks and three subcortical regions.

The results showed that greater exposure to air pollution from birth to three years old is associated with lower connectivity between the amygdala and cortical networks involved in attention, somatomotor function, and auditory function. Additionally, higher exposure to PM10 particles in the year before the neuroimaging assessment was associated with lower functional connectivity between the salience and medial-parietal networks.

These findings are consistent with previous studies suggesting that air pollution may be associated with changes in the functional connectivity of brain networks, particularly in children. However, it is not yet fully understood how air pollution affects the development and maturation of these brain networks.

The study’s lead author, Mònica Guxens, ICREA researcher at ISGlobal, explains that “these associations persist throughout adolescence, which may indicate persistent disruptions in the normal development of brain networks due to pollution exposure. This could affect emotional processing and cognitive functions.”

Another recent study by the same team examined the relationship between exposure to air pollution during pregnancy and childhood, and changes in brain volume through adolescence. The results revealed that exposure to air pollution during pregnancy, particularly to fine particles (PM2.5) and copper, was associated with a smaller volume of the hippocampus at age 8.

However, as the children grew, “compensatory growth” in the hippocampus was observed, suggesting that brain plasticity may counteract some of the initial negative effects of pollution exposure.

The research team emphasizes the importance of policies aimed at reducing pollution levels, particularly in urban environments, to safeguard children’s brain development. They note that while some brain regions may exhibit compensatory growth, the persistent disruptions observed in functional networks highlight the need for further research into the mechanisms behind these changes.

Ultimately, the findings of this study underscore the potential long-term impact of early-life air pollution exposure on brain connectivity and development, emphasizing the need for continued research and policy action to protect children’s health.

Air Pollution

Global Urban Environmental Quality: Mapping Air Pollution and CO2 Emissions Across 13,000 Cities Worldwide

In a sweeping new study of more than 13,000 urban areas worldwide, researchers have mapped air pollution levels and carbon dioxide emissions, providing comprehensive global analysis of urban environmental quality.

Avatar photo

Published

on

The study, led by George Washington University in collaboration with scientists from Washington University in St. Louis and the University of North Carolina at Chapel Hill, has mapped air pollution levels and carbon dioxide emissions across 13,189 urban areas worldwide. This comprehensive global analysis provides a powerful snapshot of how urban environments are evolving across the globe.

The research team used data from satellite observations, ground-based measurements, and computer models to measure city-level air pollution and the average amount of carbon dioxide released into the atmosphere between 2005-2019. According to Susan Anenberg, professor of environmental and occupational health at the GW Milken Institute School of Public Health, “This study shows that progress is possible but uneven, with some cities seeing worsening pollution while others are experiencing cleaner air over time.”

Key findings from the study include:

* More than 50% of cities showed links between all pollutants, suggesting they likely come from the same sources and could be reduced together.
* Urban areas in high-income regions with aggressive environmental policies saw simultaneous declines in all pollutants.
* Cities in regions undergoing rapid population and economic growth, including South Asia and parts of Africa, experienced rising pollution and emissions levels.
* Satellite remote sensing provides an unprecedented opportunity to track pollution levels in all cities worldwide.

The study’s integrated approach offers policymakers, researchers, and climate advocates a valuable new tool for assessing the effectiveness of strategies to reduce pollution. By tracking historical pollutant trends and analyzing correlations across air pollution, nitrogen dioxide, and carbon dioxide emissions, the study offers insights into how urban areas can make progress on both climate and public health goals.

Researchers have also created an interactive map and dashboard to track air pollution in cities worldwide, providing a valuable resource for policymakers, researchers, and climate advocates.

Continue Reading

Air Pollution

Breaking Down Plastic Pollution: A Revolutionary New Tool for Detecting Nanoplastics and Microplastics

A team of researchers has developed a cost-effective, high-throughput technology for detecting nanoplastics and microplastics in the environment. These particles are pervasive, posing health and environmental risks, yet detecting them at the nanoscale has been difficult. The 3D-printed HoLDI-MS test platform overcomes the limitations of traditional mass spectrometry by enabling direct analysis of samples without requiring complex sample preparation. The researchers say it also will work for detection of waterborne plastic particles. HoLDI-MS stands for hollow-laser desorption/ionization mass spectrometry.

Avatar photo

Published

on

By

The world is facing an unprecedented crisis due to the proliferation of nanoplastics and microplastics in our environment. These tiny particles, often overlooked, pose significant health and environmental risks. However, detecting them at the nanoscale has been a daunting challenge. That’s why a team of researchers from McGill University has developed a groundbreaking technology that makes it possible to detect these plastic particles efficiently and accurately.

The HoLDI-MS (Hollow-Laser Desorption/Ionization Mass Spectrometry) test platform is a 3D-printed device that overcomes the limitations of traditional mass spectrometry. This innovative tool allows for direct analysis of samples without requiring complex sample preparation, making it a cost-effective and high-throughput solution.

“We’re excited to provide a method that is effective, quantitative, highly accurate, and affordable,” said Professor Parisa Ariya, who led the study published in Nature’s Communications Chemistry. “It requires little energy, is recyclable, and costs only a few dollars per sample.”

The HoLDI-MS platform has significant implications for international cooperation in combating plastic pollution. As part of their study, the researchers identified polyethylene and polydimethylsiloxanes in indoor air, as well as polycyclic aromatic hydrocarbons in outdoor air.

“This technology allows us to pinpoint the major sources of nano and microplastics in the environment,” said Professor Ariya. “More importantly, it enables data comparison and validation across laboratories worldwide, a crucial step toward harmonizing global research on plastic pollution.”

The development of HoLDI-MS is a testament to the power of interdisciplinary collaboration and innovation. Funded by organizations such as the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canadian Foundation for Innovation (CFI), and National Research Council Canada (NRC), this technology has the potential to revolutionize the way we detect and address plastic pollution.

As the world continues to grapple with the consequences of plastic waste, the HoLDI-MS platform offers a beacon of hope. By providing a cost-effective and efficient solution for detecting nanoplastics and microplastics, this technology can help us take a significant step toward mitigating the impact of plastic pollution on our environment.

Continue Reading

Air Pollution

Microbes in Brooklyn Superfund Site Hold Key to Sustainable Pollution Cleanup

Using advanced DNA sequence analysis, a research team has discovered that tiny organisms in Brooklyn’s highly contaminated Gowanus Canal have developed a comprehensive collection of pollution-fighting genes. This finding suggests the potential of a cheaper, more sustainable, and less disruptive method for cleaning contaminated waterways than the current oft-used dredging operations.

Avatar photo

Published

on

The article highlights groundbreaking research led by NYU Tandon School of Engineering’s Assistant Professor Elizabeth Hénaff. The study published in the Journal of Applied Microbiology reveals that microorganisms in Brooklyn’s highly contaminated Gowanus Canal have developed a comprehensive collection of pollution-fighting genes.

These microbes possess 64 different biochemical pathways to degrade pollutants and 1,171 genes to process heavy metals. This discovery suggests a cheaper, more sustainable, and less disruptive method for cleaning contaminated waterways than the current dredging operations.

The researchers also found 2,300 novel genetic sequences that could enable microbes to produce potentially valuable biochemical compounds for medicine, industry, or environmental applications.

The team created an immersive installation, CHANNEL, at BioBAT Art Space in Brooklyn, featuring sculpture, prints, sound, and projections alongside native Gowanus sediment and water. This artwork communicates the stories behind the scientific data, emphasizing the importance of artistic research in understanding and addressing pressing urban issues.

While more research is needed to understand how to cooperate with these organisms effectively, the discovery of such genetic tools for pollution cleanup may offer valuable lessons for environmental restoration worldwide.

The study also reveals concerns about the potential spread of antibiotic-resistant genes among microbial communities. However, it highlights promising potential benefits, including the development of faster methods for cleaning contaminated waterways and adapting bioremediation methods to resource recovery for re-use.

This research was supported by funding from various institutions, including WorldQuant Foundation, National Aeronautics and Space Administration, and National Science Foundation. The study builds on prior research spanning a decade to understand the Gowanus Canal microbiome.

The findings come as the Environmental Protection Agency continues its $1.5 billion dredging and capping operation at the canal, removing contaminated sediment and sealing remaining pollution under clean material.

The discovery of such genetic tools for pollution cleanup may offer valuable lessons for environmental restoration worldwide. The hardy microbial organisms of the Gowanus Canal have a unique genetic catalog of survival, which provides a roadmap for adaptation and directed evolution that can be used in polluted sites around the world.

Continue Reading

Trending