Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Dementia

The Fine Control of Cell Mechanics Unveiled

Our skin and mucous membranes are protected by epithelial cells. This ‘barrier’ tissue performs its function thanks to specialized structures called ‘junctions’. They ensure cell cohesion and regulate exchanges across the space between cells. Researchers have studied the role of a specific protein, gamma-actin, in the organization and mechanics of epithelial cells and their junctions. Their work reveals a mechanism of interdependence of different forms of the cytoskeletal proteins actin and myosin, and their functions. The team also demonstrates the key role of gamma-actin in the rigidity of cell membranes and the dynamics of junctional proteins, which may provide a mechanism of hearing loss.

Avatar photo

Published

on

The human body is protected by an intricate network of tissues, one of which is the epithelium – a layer of tightly bound cells that covers our skin and mucous membranes. The key to this “barrier” tissue’s effectiveness lies in its specialized structures called junctions, which ensure cell cohesion and regulate exchanges between cells. Researchers at the University of Geneva (UNIGE), collaborating with institutions in Singapore and Germany, have delved into the role of a specific protein – gamma-actin – in organizing and maintaining the mechanics of epithelial cells and their junctions.

The study, published in Nature Communications, reveals an intricate mechanism where different forms of cytoskeletal proteins actin and myosin are interdependent, influencing each other’s functions. Moreover, the researchers demonstrate that gamma-actin plays a crucial role in regulating cell membrane rigidity and junctional protein dynamics – findings that could potentially shed light on mechanisms behind hearing loss.

The epithelium is a vital tissue that lines our skin and organs, providing essential protection against external threats such as pathogens. Its tightness relies heavily on the presence of “adherens” and “tight junctions,” which are protein-based locks that link neighboring cells together. These junctions regulate molecular traffic in and out of organs – for example, facilitating nutrient absorption in the intestine or filtering substances in the kidneys.

Researchers from the UNIGE laboratory led by Associate Professor Sandra Citi aimed to understand how tight junctions interact with the cytoskeleton – the internal framework of cells – to regulate cell architecture and various epithelial functions. The team’s study focused on gamma-actin, one of the components of the cytoskeleton, and discovered that its absence triggers increased production of beta-actin and a specific form of myosin.

“Changes made the apical membrane less stiff and certain constituents of the tight junctions more mobile, without affecting the barrier formed by these junctions,” explains Marine Maupérin, postdoctoral fellow at UNIGE and first author of the study. The researchers found that gamma-actin confers increased rigidity to the apical membrane by forming a network of filaments stronger and stiffer than those made up of beta-actin filaments.

This result is particularly interesting because the stiffness of the apical membrane is essential for auditory function, says Sandra Citi. Indeed, mice deficient in gamma-actin display altered architecture of the apical surface of epithelial cells and progressive hearing loss. A stiffer cortical membrane may be required to withstand constant mechanical stimuli to which hair cells lining the inner ear are exposed.

A deeper investigation into the role of gamma-actin in maintaining cell integrity could thus help understand pathologies of hearing loss, for example.

Alzheimer's

Unlocking the Brain’s Sugar Code: Scientists Discover a New Player in the Battle Against Alzheimer’s

Scientists have uncovered a surprising sugar-related mechanism inside brain cells that could transform how we fight Alzheimer’s and other dementias. It turns out neurons don’t just store sugar for fuel—they reroute it to power antioxidant defenses, but only if an enzyme called GlyP is active. When this sugar-clearing system is blocked, toxic tau protein builds up and accelerates brain degeneration.

Avatar photo

Published

on

The battle against Alzheimer’s disease and other forms of dementia has just received a surprise player: brain sugar metabolism. A new study from scientists at the Buck Institute for Research on Aging has revealed that breaking down glycogen – a stored form of glucose – in neurons may protect the brain from toxic protein buildup and degeneration.

Glycogen is typically thought of as a reserve energy source stored in the liver and muscles, but small amounts also exist in the brain. The research team, led by postdoc Sudipta Bar, PhD, discovered that in both fly and human models of tauopathy (a group of neurodegenerative diseases including Alzheimer’s), neurons accumulate excessive glycogen. This buildup appears to contribute to disease progression.

Tau, the infamous protein that clumps into tangles in Alzheimer’s patients, physically binds to glycogen, trapping it and preventing its breakdown. When glycogen can’t be broken down, the neurons lose an essential mechanism for managing oxidative stress, a key feature in aging and neurodegeneration.

By restoring the activity of an enzyme called glycogen phosphorylase (GlyP), which kicks off the process of glycogen breakdown, the researchers found they could reduce tau-related damage in fruit flies and human stem cell-derived neurons. Rather than using glycogen as a fuel for energy production, these enzyme-supported neurons rerouted the sugar molecules into the pentose phosphate pathway (PPP) – a critical route for generating NADPH (nicotinamide adenine dinucleotide phosphate) and Glutathione, molecules that protect against oxidative stress.

The team demonstrated that dietary restriction (DR) naturally enhanced GlyP activity and improved tau-related outcomes in flies. They further mimicked these effects pharmacologically using a molecule called 8-Br-cAMP, showing that the benefits of DR might be reproduced through drug-based activation of this sugar-clearing system.

Researchers also confirmed similar glycogen accumulation and protective effects of GlyP in human neurons derived from patients with frontotemporal dementia (FTD), strengthening the potential for translational therapies. The study emphasizes the power of the fly as a model system in uncovering how metabolic dysregulation impacts neurodegeneration.

The researchers acknowledge the Buck’s highly collaborative atmosphere as a major factor in the work, highlighting the expertise in fly aging and neurodegeneration, proteomics, human iPSCs, and neurodegeneration. The study not only highlights glycogen metabolism as an unexpected hero in the brain but also opens up a new direction in the search for treatments against Alzheimer’s and related diseases.

By discovering how neurons manage sugar, we may have unearthed a novel therapeutic strategy: one that targets the cell’s inner chemistry to fight age-related decline. As we continue to age as a society, findings like these offer hope that better understanding – and perhaps rebalancing – our brain’s hidden sugar code could unlock powerful tools for combating dementia.

Continue Reading

Alzheimer's

The Common Blood Test That Could Predict Alzheimer’s Progression

A simple blood test could reveal which early Alzheimer’s patients are most at risk for rapid decline. Researchers found that people with high insulin resistance—measured by the TyG index—were four times more likely to experience faster cognitive deterioration. The study highlights a major opportunity: a common lab value already available in hospitals could help guide personalized treatment strategies. This discovery also uncovers a unique vulnerability in Alzheimer’s disease to metabolic stress, offering new possibilities for intervention while the disease is still in its early stages.

Avatar photo

Published

on

The common blood test known as the triglyceride-glucose (TyG) index has long been used to detect insulin resistance. New research presented at the European Academy of Neurology Congress 2025 suggests that this simple test could also be used to predict how fast Alzheimer’s disease progresses in individuals with mild cognitive impairment.

A team of neurologists from the University of Brescia reviewed records for 315 non-diabetic patients with cognitive deficits, including 200 with biologically confirmed Alzheimer’s disease. All subjects underwent an assessment of insulin resistance using the TyG index and a clinical follow-up of 3 years. The results showed that when patients were divided according to their TyG index levels, those in the highest third of the Mild Cognitive Impairment subgroup deteriorated far more quickly than their lower-TyG peers.

The researchers found that high TyG was associated with blood-brain barrier disruption and cardiovascular risk factors, yet it showed no interaction with the APOE ε4 genotype. This suggests that metabolic and genetic risks may act through distinct pathways.

Identifying high-TyG patients could refine enrolment for anti-amyloid or anti-tau trials and prompt earlier lifestyle or pharmacological measures to improve insulin sensitivity.

“If targeting metabolism can delay progression, we will have a readily modifiable target that works alongside emerging disease-modifying drugs,” concluded Dr. Bianca Gumina.

The study aimed to fill the gap in understanding how quickly Alzheimer’s progresses by focusing on its impact during the prodromal mild cognitive impairment (MCI) stage.

This research has significant implications for individuals with mild cognitive impairment and their families, as it could provide a simple and cost-effective way to predict the pace of cognitive decline.

References:

Continue Reading

Alternative Medicine

Iron Overload: The Hidden Culprit Behind Early Alzheimer’s in Down Syndrome

USC researchers have uncovered a hidden driver behind the early and severe onset of Alzheimer’s in people with Down syndrome: iron overload in the brain. Their study revealed that individuals with both conditions had twice the iron levels and far more oxidative damage than others. The culprit appears to be ferroptosis, an iron-triggered cell death mechanism, which is especially damaging in sensitive brain regions.

Avatar photo

Published

on

Scientists at the USC Leonard Davis School of Gerontology have made a groundbreaking discovery that sheds light on the unique challenges faced by people with Down syndrome who develop Alzheimer’s disease. Their research reveals a crucial link between high levels of iron in the brain and increased cell damage, providing a potential explanation for why Alzheimer’s symptoms often appear earlier and more severely in individuals with Down syndrome.

Down syndrome is caused by having an extra third copy (trisomy) of chromosome 21, which includes the gene for amyloid precursor protein (APP). People with Down syndrome tend to produce more APP, leading to an increased risk of developing Alzheimer’s disease. In fact, about half of all people with Down syndrome show signs of Alzheimer’s by the age of 60, which is approximately 20 years earlier than in the general population.

The researchers studied donated brain tissue from individuals with Alzheimer’s, those with both Down syndrome and Alzheimer’s (DSAD), and those without either diagnosis. They found that the brains of people with DSAD had twice as much iron and more signs of oxidative damage in cell membranes compared to the brains of individuals with Alzheimer’s alone or those with neither diagnosis.

This excess iron leads to ferroptosis, a type of cell death characterized by iron-dependent lipid peroxidation. In other words, iron builds up, drives the oxidation that damages cell membranes, and overwhelms the cell’s ability to protect itself.

The researchers also discovered that lipid rafts, tiny parts of the brain cell membrane crucial for cell signaling and protein processing, had more oxidative damage and fewer protective enzymes in DSAD brains compared to Alzheimer’s or healthy brains. These lipid rafts showed increased activity of the enzyme β-secretase, which interacts with APP to produce Aβ proteins, potentially promoting the growth of amyloid plaques.

The findings have significant implications for future treatments, especially for people with Down syndrome who are at high risk of Alzheimer’s. Early research in mice suggests that iron-chelating treatments may reduce indicators of Alzheimer’s pathology. Medications that remove iron from the brain or help strengthen antioxidant systems might offer new hope.

The study was supported by various organizations, including the National Institute on Aging and Cure Alzheimer’s Fund. These findings highlight the importance of understanding the biology of Down syndrome for Alzheimer’s research and could lead to new therapeutic approaches for this vulnerable population.

Continue Reading

Trending