Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Brain Injury

The Hidden Glitch Behind Hunger: Scientists Uncover the Brain Cells Responsible for Meal Memories

A team of scientists has identified specialized neurons in the brain that store “meal memories” detailed recollections of when and what we eat. These engrams, found in the ventral hippocampus, help regulate eating behavior by communicating with hunger-related areas of the brain. When these memory traces are impaired due to distraction, brain injury, or memory disorders individuals are more likely to overeat because they can’t recall recent meals. The research not only uncovers a critical neural mechanism but also suggests new strategies for treating obesity by enhancing memory around food consumption.

Avatar photo

Published

on

The Hidden Glitch Behind Hunger: Scientists Uncover the Brain Cells Responsible for Meal Memories

Imagine forgetting about lunch and suddenly feeling extremely hungry. It’s a common phenomenon that can lead to overeating and disordered eating behaviors. Researchers have now identified a specific group of brain cells called “meal memory” neurons in laboratory rats that could explain why people with memory problems often overeat.

These specialized cells, found in the ventral hippocampus region of the brain, become active during eating and form what scientists call “meal engrams” – sophisticated biological databases that store information about food consumption experiences. An engram is essentially the physical trace a memory leaves behind in the brain, making it possible for us to recall specific details about our meals.

The discovery has significant implications for understanding human eating disorders. Patients with memory impairments, such as those with dementia or brain injuries that affect memory formation, may often consume multiple meals in quick succession because they cannot remember eating. Furthermore, distracted eating – such as mindlessly snacking while watching television or scrolling on a phone – may impair meal memories and contribute to overconsumption.

Researchers used advanced neuroscience techniques to observe the brain activity of laboratory rats as they ate, providing the first real-time view of how meal memories form. They found that meal memory neurons are distinct from other types of brain cells involved in memory formation. When these neurons were selectively destroyed, lab rats showed impaired memory for food locations but retained normal spatial memory for non-food-related tasks.

The study revealed that meal memory neurons communicate with the lateral hypothalamus, a brain region long known to control hunger and eating behavior. When this hippocampus-hypothalamus connection was blocked, the lab rats overate and could not remember where meals were consumed.

The findings have immediate relevance for understanding human eating disorders and could eventually inform new clinical approaches for treating obesity and weight management. Current weight management strategies often focus on restricting food intake or increasing exercise, but the new research suggests that enhancing meal memory formation could be equally important.

“We’re finally beginning to understand that remembering what and when you ate is just as crucial for healthy eating as the food choices themselves,” said Scott Kanoski, professor of biological sciences at the USC Dornsife College of Letters, Arts and Sciences and corresponding author of the study.

In addition to understanding human eating disorders, this research could also inform new strategies for treating obesity and weight management. Current approaches often focus on restricting food intake or increasing exercise, but the new findings suggest that enhancing meal memory formation could be equally important.

By uncovering the brain cells responsible for meal memories, scientists have taken a significant step towards understanding the complex relationships between our brains, bodies, and eating habits. The discovery of these specialized neurons offers new hope for developing effective treatments and interventions to help individuals manage their weight and improve their overall health.

Alzheimer's

Rewinding Stroke Damage and Beyond: The Promise of GAI-17

Stroke kills millions, but Osaka researchers have unveiled GAI-17, a drug that halts toxic GAPDH clumping, slashes brain damage and paralysis in mice—even when given six hours post-stroke—and shows no major side effects, hinting at a single therapy that could also tackle Alzheimer’s and other tough neurological disorders.

Avatar photo

Published

on

The devastating effects of stroke can be irreversible, leading to loss of neurons and even death. However, researchers have made a groundbreaking discovery that may change this grim reality. A team led by Osaka Metropolitan University Associate Professor Hidemitsu Nakajima has developed a revolutionary drug called GAI-17, which inhibits the protein GAPDH involved in cell death.

GAPDH, or glyceraldehyde-3-phosphate dehydrogenase, is a multifunctional protein linked to various debilitating brain and nervous system diseases. The team’s innovative approach was to create an inhibitor that targets this protein, preventing its toxic effects on neurons. When administered to model mice with acute strokes, GAI-17 showed astonishing results: significantly reduced brain cell death and paralysis compared to untreated animals.

The significance of GAI-17 extends far beyond stroke treatment. Experiments revealed no adverse effects on the heart or cerebrovascular system, making it a promising candidate for addressing other intractable neurological diseases, including Alzheimer’s disease. Moreover, the drug demonstrated remarkable efficacy even when administered six hours after a stroke – a critical window that could revolutionize stroke care.

“We believe our GAPDH aggregation inhibitor has the potential to be a single treatment for many debilitating neurological conditions,” Professor Nakajima expressed. “We will continue to explore its effectiveness in various disease models and strive towards creating a healthier, longer-lived society.”

Continue Reading

Brain Injury

Scientists Edge Closer to Reversing Parkinson’s Symptoms — A Breakthrough for Humans?

Scientists at the University of Sydney have uncovered a malfunctioning version of the SOD1 protein that clumps inside brain cells and fuels Parkinson’s disease. In mouse models, restoring the protein’s function with a targeted copper supplement dramatically rescued movement, hinting at a future therapy that could slow or halt the disease in people.

Avatar photo

Published

on

Here is the rewritten article:

Scientists have taken a groundbreaking step towards reversing Parkinson’s symptoms in mice, paving the way for potential treatments for humans. A team of researchers at the University of Sydney has identified a new brain protein involved in the development of Parkinson’s disease and found a way to modify it.

Parkinson’s disease is a degenerative neurological disorder that affects over 150,000 people in Australia alone, making it the second most common condition after dementia. The research team, led by Professor Kay Double from the Brain and Mind Centre, has spent more than a decade studying the biological mechanisms behind the condition.

In their latest study, published in Acta Neuropathologica Communications, the researchers found that targeting the faulty SOD1 protein with a drug treatment improved motor function in mice bred to have Parkinson-like symptoms. The mice treated with the special copper supplement showed significant improvements in their motor skills, which is a promising sign for potential human treatments.

Professor Double said: “We were astonished by the success of the intervention. We had hoped that treating this malfunctioning protein might improve the Parkinson-like symptoms in the mice, but even we were surprised by the dramatic improvement.”

The study involved two groups of mice: one group received the special copper supplement, while the other received a placebo. The results showed that the mice receiving the placebo experienced a decline in their motor symptoms, whereas those receiving the copper supplement did not develop movement problems.

Professor Double said: “The results were beyond our expectations and suggest that this treatment approach could slow the progression of Parkinson’s disease in humans.”

Parkinson’s disease is caused by the death of dopamine-producing cells in the brain, leading to a range of symptoms including tremors, muscle stiffness, slow movement, and impaired balance. Currently, there is no known cure, and only limited treatments are available.

The researchers hope that their discovery will lead to improved treatments for Parkinson’s disease. Professor Double said: “As our understanding of Parkinson’s disease grows, we are finding that there are many factors contributing to its development and progression in humans – and faulty forms of the SOD1 protein is likely one of them.”

Their next step is to identify the best approach to targeting the faulty SOD1 protein in a clinical trial, which could be the start of a new therapy to slow the development of Parkinson’s disease.

Continue Reading

Alzheimer's

Groundbreaking Study Suggests Link Between Semaglutide and Lower Dementia Risk in Type 2 Diabetes Patients

A blockbuster diabetes and weight-loss drug might be doing more than controlling blood sugar—it could also be protecting the brain. Researchers at Case Western Reserve University found that people with type 2 diabetes who took semaglutide (the active ingredient in Ozempic and Wegovy) had a significantly lower risk of developing dementia. The benefit was especially strong in women and older adults.

Avatar photo

Published

on

A recent study by researchers at the Case Western Reserve School of Medicine has made an astonishing discovery that may revolutionize the way we approach dementia prevention. The research team found that semaglutide, a popular medication used to treat diabetes and aid in weight loss, could significantly lower the risk of dementia in people with type 2 diabetes (T2D).

Dementia is a devastating condition that affects millions worldwide, causing memory loss and cognitive decline. It occurs when brain cells are damaged, disrupting their connections and ultimately leading to this debilitating state. Encouragingly, studies indicate that approximately 45% of dementia cases could be prevented by addressing modifiable risk factors.

The study, published in the Journal of Alzheimer’s Disease, analyzed three years’ worth of electronic records from nearly 1.7 million T2D patients nationally. The researchers used a statistical approach that mimicked a randomized clinical trial to determine the effectiveness of semaglutide in preventing dementia.

Their findings suggest that patients prescribed semaglutide had a significantly lower risk of developing Alzheimer’s disease-related dementia compared to those taking other anti-diabetic medications, including GLP-1R-targeting medications. These results were even more pronounced in women and older adults.

Semaglutide, a glucagon-like peptide receptor (GLP-1R) molecule that decreases hunger and regulates blood sugar levels in T2D patients, has shown remarkable benefits beyond its primary use as a diabetes treatment. It also reduces the risk of cardiovascular diseases, further solidifying its potential in preventing dementia.

The study’s lead researcher, biomedical informatics professor Rong Xu, stated, “There is no cure or effective treatment for dementia, so this new study provides real-world evidence for its potential impact on preventing or slowing dementia development among at-high risk populations.”

While the findings are promising, it’s essential to note that further research through randomized clinical trials will be necessary to confirm the causal relationship between semaglutide and dementia prevention. Nevertheless, this groundbreaking study offers a glimmer of hope in the quest to combat dementia and improve the lives of millions worldwide.

Continue Reading

Trending