Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Computers & Math

AI-Powered Urgent Care: A New Era in Virtual Healthcare Decision-Making

Do physicians or artificial intelligence (AI) offer better treatment recommendations for patients examined through a virtual urgent care setting? A new study shows physicians and AI models have distinct strengths. The study compared initial AI treatment recommendations to final recommendations of physicians who had access to the AI recommendations but may or may not have reviewed them.

Avatar photo

Published

on

AI-Powered Urgent Care: A New Era in Virtual Healthcare Decision-Making

A recent Cedars-Sinai study has revealed the potential of artificial intelligence (AI) to aid physician decisions during virtual urgent care. The study compared initial AI treatment recommendations to final recommendations from physicians who had access to the AI suggestions but may or may not have reviewed them.

“We found that initial AI recommendations for common complaints in an urgent care setting were rated higher than final physician recommendations,” said Joshua Pevnick, MD, MSHS, co-director of the Cedars-Sinai Division of Informatics and associate professor of Medicine. “Artificial intelligence was especially successful in flagging urinary tract infections potentially caused by antibiotic-resistant bacteria and suggesting a culture be ordered before prescribing medications.”

However, physicians were better at eliciting a more complete history from patients and adapting their recommendations accordingly.

The study, which reviewed 461 physician-managed visits with AI recommendations, used data from Cedars-Sinai Connect, a virtual primary and urgent care program launched in 2023. The program allows individuals to access Cedars-Sinai experts for acute, chronic, and preventive care through a mobile app that initiates visits by entering medical concerns and demographic information.

The algorithm uses patient answers as well as data from the electronic health record to provide initial information about conditions with related symptoms. After presenting patients with possible diagnoses to explain their symptoms, the mobile app allows patients to initiate a video visit with a physician.

The AI system used for Cedars-Sinai Connect is developed by K Health, which created technology to reduce clinical intake and data entry burdens, allowing doctors to focus more on patient care. Investigators from Tel Aviv University also participated in the study.

“We put AI to the test in real-world conditions, not contrived scenarios,” said Ran Shaul, co-founder and chief product officer of K Health. “In everyday primary care, there are so many variables and factors — you’re dealing with complex human beings, and any given AI has to deal with incomplete data and a very diverse set of patients.”

The researchers learned that training the AI on de-identified clinical notes and using day-to-day provider care as an always-on reinforcement learning mechanism can reach the level of accuracy expected from a human doctor.

This study highlights the potential of AI-powered urgent care to improve clinical decision-making for common and acute conditions. By effectively implementing AI decision support at the point of care, healthcare professionals can provide better treatment recommendations for patients examined through virtual urgent care settings.

Artificial Intelligence

Revolutionizing Rehabilitation with Extended Reality Boccia: A Game-Changer for Older Adults

A team has developed Boccia XR, a rehabilitation program using extended reality technology that can be introduced even in environments with limited space.

Avatar photo

Published

on

The world of sports has long been fascinated by the unique charm of boccia – a Paralympic game that transcends age and ability barriers. A team from Osaka Metropolitan University has taken this phenomenon a step further with Extended Reality (XR) Boccia, an innovative rehabilitation program that combines physical exercise with emotional benefits for older adults. Developed by Associate Professor Masataka Kataoka’s research group, XR Boccia offers a fresh alternative to traditional boccia and treadmill walking, making it perfect for environments with limited space.

The researchers conducted an intriguing study to investigate the effects of XR Boccia on participants over 65. The findings reveal that both XR Boccia and traditional boccia showed significant improvements in mood, vitality, and energy among participants after experiencing these programs. Notably, there was no substantial difference in lower limb muscle activity during any of the exercises, although a notable increase in rectus femoris muscle activity (which helps extend the knee) was observed in both types of boccia compared to treadmill walking.

The implications of this research are groundbreaking. Associate Professor Kataoka noted that XR Boccia could be an effective rehabilitation exercise for older adults, boasting both physical and emotional benefits. Given its adaptability and practicality, it’s suitable for indoor environments like hospitals and nursing care facilities. The researchers aim to further investigate long-term results in a larger population of older adults and continue updating the XR program.

The study was published in PLOS One, shedding light on this innovative approach to rehabilitation. With XR Boccia, we may be witnessing a new chapter in the journey towards better health and happiness for older adults, one game at a time.

Continue Reading

Artificial Intelligence

Riding the Tides: Scientists Develop Simple Algorithm for Underwater Robots to Harness Ocean Currents

Engineers have taught a simple submarine robot to take advantage of turbulent forces to propel itself through water.

Avatar photo

Published

on

By

Researchers at Caltech have made a breakthrough in developing a simple algorithm for underwater robots to harness the power of ocean currents. Led by John Dabiri, the Centennial Professor of Aeronautics and Mechanical Engineering, the team has successfully created a system that allows small autonomous underwater vehicles (AUVs) to ride on turbulent water currents rather than fighting against them.

The researchers began by studying how jellyfish navigate through the ocean using their unique ability to traverse and plumb the depths. They outfitted these creatures with electronics and prosthetic “hats” to carry small payloads and report findings back to the surface. However, they soon realized that jellyfish do not have a brain and therefore cannot make decisions about how to navigate.

To address this limitation, Dabiri’s team developed what would be considered the equivalent of a brain for an AUV using artificial intelligence (AI). This allowed the robots to make decisions underwater and potentially take advantage of environmental flows. However, they soon discovered that AI was not the most efficient solution for their problem.

Enter Peter Gunnarson, a former graduate student who returned to Dabiri’s lab with a simpler approach. He attached an accelerometer to CARL-Bot, an AUV developed years ago as part of his work on incorporating artificial intelligence into its navigation technique. By measuring how CARL-Bot was being pushed around by vortex rings (underwater equivalents of smoke rings), Gunnarson noticed that the robot would occasionally get caught up in a vortex ring and be propelled clear across the tank.

The team then developed simple commands to help CARL-Bot detect the relative location of a vortex ring and position itself to catch a ride. Alternatively, the bot can decide to get out of the way if it does not want to be pushed by a particular vortex ring. This process involves elements of biomimicry, mimicking nature’s ability to use environmental flows for energy conservation.

Dabiri hopes to marry this work with his hybrid jellyfish project, which aims to demonstrate a similar capability to take advantage of environmental flows and move more efficiently through the water. With this breakthrough, underwater robots can now ride the tides, reducing energy expenditure and increasing their efficiency in navigating the ocean depths.

Continue Reading

Communications

A Breakthrough in Carbyne Synthesis: Unlocking Its Potential in Next-Generation Electronics

Carbyne, a one-dimensional chain of carbon atoms, is incredibly strong for being so thin, making it an intriguing possibility for use in next-generation electronics, but its extreme instability made it nearly impossible to produce at all, let alone produce enough of it for advanced studies. Now, an international team of researchers may have a solution.

Avatar photo

Published

on

By

The synthesis of carbyne, a one-dimensional chain of carbon atoms, has long been a challenge due to its extreme instability. However, an international team of researchers has finally found a solution by enclosing it within single-walled carbon nanotubes. This breakthrough opens up new possibilities for using carbyne in next-generation electronics.

The researchers used a special precursor, ammonium cholate, to grow carbyne at low temperatures. They also employed single-walled carbon nanotubes as a protective shell around the carbyne, which helps keep it stable. The new synthesis method produces more carbyne than before, making it easier for scientists to study its properties and explore its potential applications.

The unique properties of carbyne make it an attractive material for next-generation electronics. Unlike graphene, carbyne has a built-in semiconductor gap, allowing it to act as a switch for electrical current. This property makes carbyne-based electronics potentially faster and more efficient than today’s silicon-based technology.

The research team also made an unexpected discovery during the study. They found that a common solvent, cholate, can transform into carbyne chains without additional complex steps. This finding shows how familiar materials can take on new roles in advanced chemistry.

While many questions about carbyne remain unanswered, this breakthrough is a significant step forward. With a stable way to produce carbyne in larger quantities, researchers can now explore its potential more deeply and potentially unlock new technologies in the field of next-generation electronics.

Continue Reading

Trending